|
|
Received: 20 September 2018
|
|
|
|
|
[1] |
Brown R H, Al-Chalabi A. Amyotrophic lateral sclerosis[J]. N Engl J Med, 2017, 377(2):162-172.
|
[2] |
Neumann M, Sampathu D M, Kwong LK, et al. Ubiquitinated TGP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Science, 2006, 314(5796):130-133.
|
[3] |
宋 玉, 王 恒, 潘卫东,等. 从运动神经元的TGP-43蛋白表达和ADAR2活性探讨肌萎缩侧索硬化症的发病机制[J]. 中国临床神经科学, 2014,22(3):356-360.
|
[4] |
周丽娜, 宋春莉. 肌萎缩侧索硬化基因研究进展[J]. 医学与哲学(b), 2017,38(9):61-64.
|
[5] |
Rakhit R, Chakrabartty A. Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis[J]. Biochim Biophys Acta, 2006, 1762(11-12):1025-1037.
|
[6] |
Peters O M, Ghasemi M, Brown R H. Emerging mechanisms of molecular pathology in ALS[J]. J Clin Invest, 2015, 125(5):1767-1779.
|
[7] |
Stoica L, Todeasa S H, Cabrera G T, et al. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model[J]. Ann Neurol, 2016, 79(4):687-700.
|
[8] |
Borel F, Gernoux G, Cardozo B, et al. Therapeutic RAAVrh10 mediated Sod1 silencing in adult sod1(G93A) mice and nonhuman primates[J]. Hum Gene Ther, 2016, 27(1):19-31.
|
[9] |
Samaranch L, Salegio E A, San Sebastian W, et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates[J]. Hum Gene Ther, 2012, 23(4):382-389.
|
[10] |
Dirren E, Aebischer J, Rochat C, et al. Sod1 silencing in motoneurons or glia rescues neuromuscular function in ALS mice[J]. Ann Clin Transl Neurol, 2015, 2(2):167-184.
|
[11] |
Dirren E, Towne C L, Setola V, et al. Intracerebroventricular injection of Adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord[J]. Hum Gene Ther, 2014, 25(2):109-120.
|
[12] |
McLean J R, Smith G A, Rocha E M, et al. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection[J]. Neurosci Lett, 2014, 576:73-78.
|
[13] |
Foust K D, Salazar D L, Likhite S, et al. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited als[J]. Mol Ther, 2013, 21(12):2148-2159.
|
[14] |
Miller T M, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with sod1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study[J]. Lancet Neurol, 2013, 12(5):435-442.
|
[15] |
Wu L S, Cheng W C, Hou S C, et al. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis[J]. Genesis, 2010, 48(1):56-62.
|
[16] |
Iguchi Y, Katsuno M, Niwa J, et al. Loss of TDP-43 causes age-dependent progressive motor neuron degeneration[J]. Brain,2013, 136(Pt 5):1371-1382.
|
[17] |
Becker L A, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice[J]. Nature, 2017, 544(7650):367-371.
|
[18] |
Chou C C, Alexeeva O M, Yamada S, et al. Pabpn1 suppresses TDP-43 toxicity in als disease models[J]. Hum Mol Genet, 2015, 24(18):5154-5173.
|
[19] |
Wang W, Wang L, Lu J, et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity[J]. Nat Med, 2016, 22(8):869-878.
|
[20] |
DeJesus-Hernandez M, Mackenzie I R, Boeve B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72(2):245-256.
|
[21] |
Kramer N J, Carlomagno Y, Zhang Y J, et al. Spt4 selectively regulates the expression of C9ORF72 sense and antisense mutant transcripts[J]. Science, 2016, 353(6300):708-712.
|
[22] |
Pandya R S, Mao L L, Zhou E W, et al. Neuroprotection for amyotrophic lateral sclerosis: Role of stem cells, growth factors, and Gene therapy[J]. Cent Nerv Syst Agents Med Chem, 2012, 12(1):15-27.
|
[23] |
Keeler A M, ElMallah M K, Flotte T R. Gene therapy 2017: Progress and future directions[J]. Clin Transl Sci, 2017, 10(4):242-248.
|
|
|