|
|
Received: 10 September 2020
|
|
|
|
|
[1] |
Markowski M C, Boorjian S A, Burton J P, et al. The microbiome and genitourinary cancer: a collaborative review[J]. Eur Urol, 2019, 75(4): 637-646.
|
[2] |
Dudley J C, Schroers-Martin J, Lazzareschi D V, et al. Detection and surveillance of bladder cancer using urine tumor DNA[J]. Cancer Discov, 2019, 9(4): 500-509.
|
[3] |
Yong C, Stewart G D, Frezza C. Oncometabolites in renal cancer[J]. Nat Rev Nephrol, 2020, 16(3): 156-172.
|
[4] |
Auchus R J, Sharifi N. Sex Hormones and Prostate Cancer[J]. Annu Rev Med, 2020, 71(1): 33-45.
|
[5] |
Hashimoto Y, Greco T M, and Cristea I M. Contribution of mass spectrometry-based proteomics to discoveries in developmental biology[J]. Adv Exp Med Biol, 2019, 1140(9): 143-154.
|
[6] |
Bittremieux W, Tabb D L, Impens F, et al. Quality control in mass spectrometry-based proteomics[J]. Mass Spectrom Rev, 2018, 37(5): 697-711.
|
[7] |
Chen Y T, Chen C L, Chen H W, et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology[J]. J Proteome Res, 2010, 9(11): 5803-5815.
|
[8] |
Li C, Li H, Zhang T, et al. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis[J]. Biochem Biophys Res Commun, 2014, 446(4): 1047-1052.
|
[9] |
Chen C L, Chung T, Wu C C, et al. Comparative Tissue proteomics of microdissected specimens reveals novel candidate biomarkers of bladder cancer[J]. Mol Cell Proteomics, 2015, 14(9): 2466-2478.
|
[10] |
Li F, Chen D N, He C W, et al. Identification of urinary Gc-globulin as a novel biomarker for bladder cancer by two-dimensional fluorescent differential gel electrophoresis (2D-DIGE)[J]. J Proteomics, 2012, 77(12): 225-236.
|
[11] |
Frantzi M, van Kessel K E, Zwarthoff E C, et al. Development and validation of urine-based peptide biomarker panels for detecting bladder cancer in a multi-center study[J]. Clin Cancer Res, 2016, 22(16): 4077-4086.
|
[12] |
Krochmal M, van Kessel K E M, Zwarthoff E C, et al. Urinary peptide panel for prognostic assessment of bladder cancer relapse[J]. Sci Rep, 2019, 9(1): 7635.
|
[13] |
Lemańska-Perek A, Lis-Kuberka J, Lepczyński A, et al. Potential plasma biomarkers of bladder cancer identified by proteomic analysis: a pilot study[J]. Adv Clin Exp Med, 2019, 28(3): 339-346.
|
[14] |
Stroggilos R, Mokou M, Latosinska A, et al. Proteome-based classification of nonmuscle invasive bladder cancer[J]. Int J Cancer, 2020, 46(1): 281-294.
|
[15] |
Witzke K E, Groβerueschkamp F, Jütte H, et al. Integrated fourier transform infrared imaging and proteomics for identification of a candidate histochemical biomarker in bladder cancer[J]. Am J Pathol, 2019, 189(3): 619-631.
|
[16] |
Di M A, Batruch I, Brown M D, et al. Searching for prognostic biomarkers for small renal masses in the urinary proteome[J]. Int J Cancer, 2020, 146(8): 2315-2325.
|
[17] |
Stella M, Chinello C, Cazzaniga A, et al. Histology-guided proteomic analysis to investigate the molecular profiles of clear cell renal cell carcinoma grades[J]. J Proteomics, 2019, 191(1): 38-47.
|
[18] |
Kaysheva A L, Kopylov A T, Kushlinskii N E, et al. Comparative analysis of blood plasma proteome in patients with renal cell carcinoma[J]. Bull Exp Biol Med, 2019, 167(1): 91-96.
|
[19] |
Chinello C, Stella M, Piga I, et al. Proteomics of liquid biopsies: depicting RCC infiltration into the renal vein by MS analysis of urine and plasma[J]. J Proteomics, 2019, 191(1): 29-37.
|
[20] |
陈壮飞,肖耀军,黄泽海,等. 荧光差异双向凝胶电泳筛选肾透明细胞癌及癌旁组织中的差异表达蛋白[J]. 南方医科大学学报,2017,37(11):1517-1522.
|
[21] |
Ueda K, Tatsuguchi A, Saichi N, et al. Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide[J]. J Proteome Res, 2013, 12(10): 4497-4506.
|
[22] |
Cheng H L, Huang H J, Ou B Y, et al. Urinary CD14 as a potential biomarker for benign prostatic hyperplasia-discovery by combining MALDI-TOF-based biostatistics and ESI-MS/MS-based stable-isotope labeling[J]. Proteomics Clin Appl, 2011, 5: 121-132.
|
[23] |
Ummanni R, Duscharla D, Barett C, et al. Prostate cancer-associated autoantibodies in serum against tumor-associated antigens as potential new biomarkers[J]. J Proteomics, 2015, 119(4): 218-229.
|
[24] |
Kohli M, Oberg A L, Mahoney D W, et al. Serum proteomics on the basis of discovery of predictive biomarkers of response to androgen deprivation therapy in advanced prostate cancer[J]. Clin Genitourin Cancer, 2019, 17(4): 248-253.
|
[25] |
Al-Ruwaili J A, Larkin S E T, Zeidan B A, et al. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis[J]. Cancer Genomics Proteomics, 2010, 7(2): 93-103.
|
[26] |
Fujita K, Kume H, Matsuzaki K, et al. Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer[J]. Sci Rep, 2017, 7(2): 42961.
|
[27] |
Kwon O K, Ha Y S, Lee J N, et al. Comparative proteome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteogenomics[J]. Cancer Genomics Proteomics, 2019, 16(4): 273-286.
|
[28] |
Kwon O K, Jeon J M, Sung E, et al. Comparative secretome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteomics[J]. Cancer Genomics Proteomics, 2018, 15(4): 279-290.
|
[29] |
Totten S M, Adusumilli R, Kullolli M, et al. Multi-lectin affinity chromatography and quantitative proteomic analysis reveal differential glycoform levels between prostate cancer and benign prostatic hyperplasia sera[J]. Sci Rep, 2018, 8(1): 6509.
|
[30] |
Latonen L, Afyounian E, Jylhä A, et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression[J]. Nat Commun, 2018, 9(1): 1176.
|
|
|