|
|
Research progress on epigenetic regulation in pathogenesis of Helicobacter pylori positive gastric cancer |
GAO Chun, JIANG Jingjing, CHEN Yuchun, et al |
|
[4] |
Fol M, Włodarczyk M, Druszczyńska M. Host epigenetics in intracellular pathogen infections[J]. Int J Mol Sci, 2020,21(13):4573.
|
[5] |
Russell S K, Harrison J K, Olson B S, et al. Uropathogenic Escherichia coli infection-induced epithelial trained immunity impacts urinary tract disease outcome[J]. Nat Microbiol, 2023,10:1038.
|
[1] |
Bierne H, Hamon M, Cossart P. Epigenetics and bacterial infections[J]. Cold Spring Harb Perspect Med, 2012,2(12):a010272.
|
[6] |
Huo M, Zhang J, Huang W, et al. Interplay among metabolism, epigenetic modifications, and gene expression in cancer [J]. Front Cell Dev Biol, 2021,9:793428.
|
[2] |
Maeda M, Moro H, Ushijima T. Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway[J]. Gastric Cancer, 2017, 20 (Suppl 1):8-15.
|
[7] |
Freeman A H, Tembiwa K, Brenner J R, et al. Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis[J]. Mol Microbiol, 2023, 119 (2): 208-223.
|
[3] |
Ghosh D, Veeraraghavan B, Elangovan R, et al. Antibiotic resistance and epigenetics: more to it than meets the eye[J].Antimicrob Agents Ch, 2020,64(2):e02225-19.
|
[4] |
Fol M, Włodarczyk M, Druszczyńska M. Host epigenetics in intracellular pathogen infections[J]. Int J Mol Sci, 2020,21(13):4573.
|
[8] |
Chen P, den Bakker H C, Korlach J, et al. Comparative genomics reveals the diversity of restriction-modification systems and dna methylation sites in listeria monocytogenes[J]. Appl Environ Microbiol, 2017, 83(3):e02091-16.
|
[5] |
Russell S K, Harrison J K, Olson B S, et al. Uropathogenic Escherichia coli infection-induced epithelial trained immunity impacts urinary tract disease outcome[J]. Nat Microbiol, 2023,10:1038.
|
[9] |
Pastushenko I, Blanpain C. EMT Transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019,29(3):212-226.
|
[10] |
Kumar V, Vashishta M, Kong L, et al. The role of notch, hedgehog, and wnt signaling pathways in the resistance of tumors to anticancer therapies [J]. Front Cell Dev Biol, 2021,9:650772.
|
[6] |
Huo M, Zhang J, Huang W, et al. Interplay among metabolism, epigenetic modifications, and gene expression in cancer [J]. Front Cell Dev Biol, 2021,9:793428.
|
[7] |
Freeman A H, Tembiwa K, Brenner J R, et al. Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis[J]. Mol Microbiol, 2023, 119 (2): 208-223.
|
[11] |
Fitz Gerald R, Smith S M. An overview of helicobacter pylori infection[J]. Methods Mol Biol, 2021,2283:1-14.
|
[12] |
de Brito B B, da Silva F A F, Soares A S, et al. Pathogenesis and clinical management of Helicobacter pylori gastric infection[J]. World J Gastroenterol, 2019,25(37):5578-5589.
|
[8] |
Chen P, den Bakker H C, Korlach J, et al. Comparative genomics reveals the diversity of restriction-modification systems and dna methylation sites in listeria monocytogenes[J]. Appl Environ Microbiol, 2017, 83(3):e02091-16.
|
[9] |
Pastushenko I, Blanpain C. EMT Transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019,29(3):212-226.
|
[13] |
Olivera-Severo D, Uberti A F, Marques M S, et al. A new role for helicobacter pylori urease: contributions to angiogenesis[J]. Front Microbiol, 2017, 8:1883.
|
[14] |
Markovska R, Boyanova L, Yordanov D, et al. Status of Helicobacter pylori cag pathogenicity island (cagPAI) integrity and significance of its individual genes[J]. Infect Genet Evol, 2018, 59:167-171.
|
[10] |
Kumar V, Vashishta M, Kong L, et al. The role of notch, hedgehog, and wnt signaling pathways in the resistance of tumors to anticancer therapies [J]. Front Cell Dev Biol, 2021,9:650772.
|
[15] |
Baj J, Forma A, Sitarz M, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment[J]. Cells, 2020,10(1):27.
|
[11] |
Fitz Gerald R, Smith S M. An overview of helicobacter pylori infection[J]. Methods Mol Biol, 2021,2283:1-14.
|
[16] |
Li N, Feng Y, Hu Y, et al. Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway[J]. J Exp Clin Cancer Res, 2018, 37(1):280.
|
[12] |
de Brito B B, da Silva F A F, Soares A S, et al. Pathogenesis and clinical management of Helicobacter pylori gastric infection[J]. World J Gastroenterol, 2019,25(37):5578-5589.
|
[13] |
Olivera-Severo D, Uberti A F, Marques M S, et al. A new role for helicobacter pylori urease: contributions to angiogenesis[J]. Front Microbiol, 2017, 8:1883.
|
[17] |
Chauhan N, Tay A C Y, Marshall B J, et al. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells:an overview[J]. Helicobacter, 2019, 24(1):e12544.
|
[18] |
Li Q, Liu J, Gong Y, et al. Serum VacA antibody is associated with risks of peptic ulcer and gastric cancer: a meta-analysis[J]. Microb Pathog, 2016, 99:220-228.
|
[14] |
Markovska R, Boyanova L, Yordanov D, et al. Status of Helicobacter pylori cag pathogenicity island (cagPAI) integrity and significance of its individual genes[J]. Infect Genet Evol, 2018, 59:167-171.
|
[19] |
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori[J]. FEMS Microbiol Rev, 2021,45(1):fuaa042.
|
[15] |
Baj J, Forma A, Sitarz M, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment[J]. Cells, 2020,10(1):27.
|
[20] |
Hefetz I, Israeli O, Bilinsky G, et al. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction[J]. iScience, 2023,26(2):106043.
|
[16] |
Li N, Feng Y, Hu Y, et al. Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway[J]. J Exp Clin Cancer Res, 2018, 37(1):280.
|
[21] |
Masel J. Cryptic genetic variation is enriched for potential adaptations[J]. Genetics, 2006, 172 (3): 1985-1991.
|
[17] |
Chauhan N, Tay A C Y, Marshall B J, et al. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells:an overview[J]. Helicobacter, 2019, 24(1):e12544.
|
[22] |
Ailloud F, Estibariz I, Pfaffinger G, et al. The Helicobacter pylori uvrc nuclease is essential for chromosomal microimports after natural transformation[J]. mBio, 2022,13(4):e0181122.
|
[18] |
Li Q, Liu J, Gong Y, et al. Serum VacA antibody is associated with risks of peptic ulcer and gastric cancer: a meta-analysis[J]. Microb Pathog, 2016, 99:220-228.
|
[23] |
di Felice F, Micheli G, Camilloni G. Restriction enzymes and their use in molecular biology: an overview [J]. J Biosci, 2019,44(2):38.
|
[19] |
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori[J]. FEMS Microbiol Rev, 2021,45(1):fuaa042.
|
[24] |
Wilkinson D J, Dickins B, Robinson K, et al. Genomic diversity of Helicobacter pylori populations from different regions of the human stomach [J]. Gut Microbes, 2022, 14 (1): 2152306.
|
[20] |
Hefetz I, Israeli O, Bilinsky G, et al. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction[J]. iScience, 2023,26(2):106043.
|
[25] |
Malfertheiner P, Camargo M C, El-Omar E, et al. Helicobacter pylori infection[J]. Nat Rev Dis Primers, 2023,9(1):19.
|
[21] |
Masel J. Cryptic genetic variation is enriched for potential adaptations[J]. Genetics, 2006, 172 (3): 1985-1991.
|
[26] |
Kavermann H, Burns B P, Angermuller K, et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization[J]. J Exp Med, 2003, 197(7): 813- 822.
|
[22] |
Ailloud F, Estibariz I, Pfaffinger G, et al. The Helicobacter pylori uvrc nuclease is essential for chromosomal microimports after natural transformation[J]. mBio, 2022,13(4):e0181122.
|
[27] |
徐晨静,吴 瑶,蒋建霞,等.幽门螺杆菌外膜蛋白及其毒力的研究进展[J].实用临床医药杂志, 2020,24(9):127-132.
|
[23] |
di Felice F, Micheli G, Camilloni G. Restriction enzymes and their use in molecular biology: an overview [J]. J Biosci, 2019,44(2):38.
|
[28] |
Xu C, Soyfoo D M, Wu Y, et al. Virulence of Helicobacter pylori outer membrane proteins: an updated review[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(10):1821-1830.
|
[24] |
Wilkinson D J, Dickins B, Robinson K, et al. Genomic diversity of Helicobacter pylori populations from different regions of the human stomach [J]. Gut Microbes, 2022, 14 (1): 2152306.
|
[29] |
Gorrell R, Kwok T. The Helicobacter pylori methylome: roles in gene regulation and virulence [J]. Curr Top Microbiol Immunol, 2017,400:105-127.
|
[25] |
Malfertheiner P, Camargo M C, El-Omar E, et al. Helicobacter pylori infection[J]. Nat Rev Dis Primers, 2023,9(1):19.
|
[26] |
Kavermann H, Burns B P, Angermuller K, et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization[J]. J Exp Med, 2003, 197(7): 813- 822.
|
[30] |
Vale F F, Mégraud F, Vítor J M. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration[J]. BMC Microbiol, 2009,9:193.
|
[27] |
徐晨静,吴 瑶,蒋建霞,等.幽门螺杆菌外膜蛋白及其毒力的研究进展[J].实用临床医药杂志, 2020,24(9):127-132.
|
[31] |
Pandey S, Jha H C, Shukla S K, et al. Epigenetic regulation of tumor suppressors by Helicobacter pylori enhances EBV-induced proliferation of gastric epithelial cells[J]. mBio, 2018, 9(2):e00649-18.
|
[28] |
Xu C, Soyfoo D M, Wu Y, et al. Virulence of Helicobacter pylori outer membrane proteins: an updated review[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(10):1821-1830.
|
[32] |
McLaughlin-Drubin M E, Munger K. Viruses associated with human cancer[J]. Biochim Biophys Acta, 2008,1782(3):127-150.
|
[33] |
Cheng A S, Li M S, Kang W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis[J]. Gastroenterology, 2013, 144(1):122-133.
|
[29] |
Gorrell R, Kwok T. The Helicobacter pylori methylome: roles in gene regulation and virulence [J]. Curr Top Microbiol Immunol, 2017,400:105-127.
|
[34] |
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2):111-128.
|
[30] |
Vale F F, Mégraud F, Vítor J M. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration[J]. BMC Microbiol, 2009,9:193.
|
[35] |
Muhammad J S, Eladl M A, Khoder G. Helicobacter pylori-induced DNA methylation as an epigenetic modulator of gastric cancer: recent outcomes and future direction[J]. Pathogens, 2019, 8(1):23.
|
[31] |
Pandey S, Jha H C, Shukla S K, et al. Epigenetic regulation of tumor suppressors by Helicobacter pylori enhances EBV-induced proliferation of gastric epithelial cells[J]. mBio, 2018, 9(2):e00649-18.
|
[36] |
Takahashi-Kanemitsu A, Knight C T, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis[J]. Cell Mol Immunol, 2020,17(1):50-63.
|
[32] |
McLaughlin-Drubin M E, Munger K. Viruses associated with human cancer[J]. Biochim Biophys Acta, 2008,1782(3):127-150.
|
[37] |
Yokoyama K, Higashi H, Ishikawa S, et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells[J]. Proc Natl Acad Sci U S A, 2005, 102(27):9661-9666.
|
[33] |
Cheng A S, Li M S, Kang W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis[J]. Gastroenterology, 2013, 144(1):122-133.
|
[34] |
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2):111-128.
|
[38] |
Lin A S, McClain M S, Beckett A C, et al. Temporal control of the Helicobacter pylori Cag Type IV secretion system in a mongolian gerbil model of gastric carcinogenesis[J]. mBio, 2020,11(3):e01296-20.
|
[35] |
Muhammad J S, Eladl M A, Khoder G. Helicobacter pylori-induced DNA methylation as an epigenetic modulator of gastric cancer: recent outcomes and future direction[J]. Pathogens, 2019, 8(1):23.
|
[39] |
Cuomo P, Papaianni M, Sansone C, et al. An in vitro model to investigate the role of Helicobacter pylori in type 2 diabetes, obesity, alzheimer's disease and cardiometabolic disease[J]. Int J Mol Sci, 2020, 21(21):8369.
|
[36] |
Takahashi-Kanemitsu A, Knight C T, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis[J]. Cell Mol Immunol, 2020,17(1):50-63.
|
[40] |
Cuomo P, Papaianni M, Capparelli R, et al. The Role of formyl peptide receptors in permanent and low-grade inflammation: Helicobacter pylori infection as a model[J]. Int J Mol Sci, 2021, 22(7):3706.
|
[37] |
Yokoyama K, Higashi H, Ishikawa S, et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells[J]. Proc Natl Acad Sci U S A, 2005, 102(27):9661-9666.
|
[41] |
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature, 2014, 513(7517):202-209.
|
[38] |
Lin A S, McClain M S, Beckett A C, et al. Temporal control of the Helicobacter pylori Cag Type IV secretion system in a mongolian gerbil model of gastric carcinogenesis[J]. mBio, 2020,11(3):e01296-20.
|
[42] |
Niwa T, Toyoda T, Tsukamoto T, et al. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent[J]. Cancer Prev Res (Phila), 2013, 6(4): 263- 270.
|
[43] |
Liu C, Huo Y, Zhang Y, et al. Development and experimental validation of a novel prognostic signature for gastric cancer[J]. Cancers (Basel), 2023, 15(5):1610.
|
[39] |
Cuomo P, Papaianni M, Sansone C, et al. An in vitro model to investigate the role of Helicobacter pylori in type 2 diabetes, obesity, alzheimer's disease and cardiometabolic disease[J]. Int J Mol Sci, 2020, 21(21):8369.
|
[40] |
Cuomo P, Papaianni M, Capparelli R, et al. The Role of formyl peptide receptors in permanent and low-grade inflammation: Helicobacter pylori infection as a model[J]. Int J Mol Sci, 2021, 22(7):3706.
|
[44] |
Noh C K, Lee E, Park B, et al. Effect of Helicobacter pylori eradication treatment on metachronous gastric neoplasm prevention following endoscopic submucosal dissection for gastric adenoma[J]. J Clin Med, 2023,12(4):1512.
|
[45] |
Wang P, Li P, Chen Y, et al. Chinese integrated guideline on the management of gastric precancerous conditions and lesions[J]. Chin Med, 2022,17(1):138.
|
[41] |
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature, 2014, 513(7517):202-209.
|
[46] |
O'Brien V P, Jackson L K, Frick J P, et al. Helicobacter pylori chronic infection selects for effective colonizers of metaplastic glands[J]. mBio, 2023,14(1):e0311622.
|
[42] |
Niwa T, Toyoda T, Tsukamoto T, et al. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent[J]. Cancer Prev Res (Phila), 2013, 6(4): 263- 270.
|
[43] |
Liu C, Huo Y, Zhang Y, et al. Development and experimental validation of a novel prognostic signature for gastric cancer[J]. Cancers (Basel), 2023, 15(5):1610.
|
[47] |
He C, Peng C, Xu X, et al. Probiotics mitigate Helicobacter pylori-induced gastric inflammation and premalignant lesions in INS-GAS mice with the modulation of gastrointestinal microbiota[J]. Helicobacter, 2022,27(4):e12898.
|
[44] |
Noh C K, Lee E, Park B, et al. Effect of Helicobacter pylori eradication treatment on metachronous gastric neoplasm prevention following endoscopic submucosal dissection for gastric adenoma[J]. J Clin Med, 2023,12(4):1512.
|
[48] |
Smith A L M, Whitehall J C, Greaves L C. Mitochondrial DNA mutations in ageing and cancer [J]. Mol Oncol, 2022,16(18):3276-3294.
|
[45] |
Wang P, Li P, Chen Y, et al. Chinese integrated guideline on the management of gastric precancerous conditions and lesions[J]. Chin Med, 2022,17(1):138.
|
[49] |
Niu N, Ye J, Hu Z, et al. Regulative roles of metabolic plasticity caused by mitochondrial oxidative phosphorylation and glycolysis on the initiation and progression of tumorigenesis[J]. Int J Mol Sci, 2023,24(8):7076.
|
[46] |
O'Brien V P, Jackson L K, Frick J P, et al. Helicobacter pylori chronic infection selects for effective colonizers of metaplastic glands[J]. mBio, 2023,14(1):e0311622.
|
[50] |
Murata-Kamiya N, Hatakeyama M. Helicobacter pylori-induced DNA double-stranded break in the development of gastric cancer [J]. Cancer Sci, 2022,113(6):1909-1918.
|
[51] |
Han L, Shu X, Wang J. Helicobacter pylori -mediated oxidative stress and gastric diseases: a review[J]. Front Microbiol, 2022,13:811258.
|
[47] |
He C, Peng C, Xu X, et al. Probiotics mitigate Helicobacter pylori-induced gastric inflammation and premalignant lesions in INS-GAS mice with the modulation of gastrointestinal microbiota[J]. Helicobacter, 2022,27(4):e12898.
|
[52] |
Shichijo S, Uedo N, Michida T. Detection of early gastric cancer after Helicobacter pylori eradication[J]. Digestion, 2022,103(1):54-61.
|
[48] |
Smith A L M, Whitehall J C, Greaves L C. Mitochondrial DNA mutations in ageing and cancer [J]. Mol Oncol, 2022,16(18):3276-3294.
|
[53] |
Vahidi S, Mirzajani E, Norollahi S E, et al. Performance of DNA methylation on the molecular pathogenesis of helicobacter pylori in gastric cancer; targeted therapy approach[J]. J Pharmacopuncture, 2022,25(2):88-100.
|
[49] |
Niu N, Ye J, Hu Z, et al. Regulative roles of metabolic plasticity caused by mitochondrial oxidative phosphorylation and glycolysis on the initiation and progression of tumorigenesis[J]. Int J Mol Sci, 2023,24(8):7076.
|
[50] |
Murata-Kamiya N, Hatakeyama M. Helicobacter pylori-induced DNA double-stranded break in the development of gastric cancer [J]. Cancer Sci, 2022,113(6):1909-1918.
|
[51] |
Han L, Shu X, Wang J. Helicobacter pylori -mediated oxidative stress and gastric diseases: a review[J]. Front Microbiol, 2022,13:811258.
|
[52] |
Shichijo S, Uedo N, Michida T. Detection of early gastric cancer after Helicobacter pylori eradication[J]. Digestion, 2022,103(1):54-61.
|
[53] |
Vahidi S, Mirzajani E, Norollahi S E, et al. Performance of DNA methylation on the molecular pathogenesis of helicobacter pylori in gastric cancer; targeted therapy approach[J]. J Pharmacopuncture, 2022,25(2):88-100.
|
|
|
|