|
|
Received: 09 November 2023
|
|
|
|
|
[2] |
Mahmoudian A, Lohmander LS, Mobasheri A, et al. Early-stage symptomatic osteoarthritis of the knee-time for action [J]. Nat Rev Rheumatol, 2021, 17(10):621-632.
|
[1] |
Katz J N, Arant K R, Loeser R F. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6):568-578.
|
[3] |
Tachmazidou I, Hatzikotoulas K, Southam L, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data[J]. Nat Genet, 2019, 51(2):230-236.
|
[2] |
Mahmoudian A, Lohmander LS, Mobasheri A, et al. Early-stage symptomatic osteoarthritis of the knee-time for action [J]. Nat Rev Rheumatol, 2021, 17(10):621-632.
|
[4] |
Brunger J M, Zutshi A, Willard V P, et al. CRISPR/Cas9 Editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues[J]. Arthritis Rheumatol, 2017, 69(5):1111-1121.
|
[3] |
Tachmazidou I, Hatzikotoulas K, Southam L, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data[J]. Nat Genet, 2019, 51(2):230-236.
|
[5] |
Lou Y, Song F, Kang Y, Xu Y. Periodic Mechanical Stress Inhibits the Development of Osteoarthritis via Regulating ATF3-Akt Axis[J]. J Inflamm Res, 2023, 16:5613-5628.
|
[4] |
Brunger J M, Zutshi A, Willard V P, et al. CRISPR/Cas9 Editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues[J]. Arthritis Rheumatol, 2017, 69(5):1111-1121.
|
[6] |
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens[J]. Immunol Rev, 2015, 265(1):130-42.
|
[5] |
Lou Y, Song F, Kang Y, Xu Y. Periodic Mechanical Stress Inhibits the Development of Osteoarthritis via Regulating ATF3-Akt Axis[J]. J Inflamm Res, 2023, 16:5613-5628.
|
[7] |
Liang S, Sun K, Wang Y, et al. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid[J].Chem Biol Interact,2016, 258:40-51.
|
[6] |
Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens[J]. Immunol Rev, 2015, 265(1):130-42.
|
[8] |
Ren H, Yang H, Xie M, et al. Chondrocyte apoptosis in rat mandibular condyles induced by dental occlusion due to mitochondrial damage caused by nitric oxide[J].Arch. Oral Biol,2019, 101:108-121.
|
[7] |
Liang S, Sun K, Wang Y, et al. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid[J].Chem Biol Interact,2016, 258:40-51.
|
[9] |
Lacey C A, Mitchell W J, Dadelahi A S, et al. Caspase-1 and Caspase-11 Mediate Pyroptosis, Inflammation, and Control of Brucella Joint Infection[J].Infect Immun, 2018, 86:1-18.
|
[8] |
Ren H, Yang H, Xie M, et al. Chondrocyte apoptosis in rat mandibular condyles induced by dental occlusion due to mitochondrial damage caused by nitric oxide[J].Arch. Oral Biol,2019, 101:108-121.
|
[10] |
Swanson K V, Deng M, Ting J P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J].Nat Rev Immunol,2019,19:477-489.
|
[9] |
Lacey C A, Mitchell W J, Dadelahi A S, et al. Caspase-1 and Caspase-11 Mediate Pyroptosis, Inflammation, and Control of Brucella Joint Infection[J].Infect Immun, 2018, 86:1-18.
|
[11] |
An S, Hu H, Li Y, et al. Pyroptosis Plays a Role in Osteoarthritis[J].Aging Dis,2020, 11:1146-1157.
|
[10] |
Swanson K V, Deng M, Ting J P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J].Nat Rev Immunol,2019,19:477-489.
|
[12] |
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation[J]. EMBO Mol Med, 2024, 16(2):219-237.
|
[11] |
An S, Hu H, Li Y, et al. Pyroptosis Plays a Role in Osteoarthritis[J].Aging Dis,2020, 11:1146-1157.
|
[12] |
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation[J]. EMBO Mol Med, 2024, 16(2):219-237.
|
[13] |
Deng X, Wang L, Zhai Y, et al. RIPK1 plays a crucial role in maintaining regulatory T-Cell homeostasis by inhibiting both RIPK3-and FADD-mediated cell death[J]. Cell Mol Immunol, 2024, 21(1):80-90.
|
[14] |
Cheng J, Duan X, Fu X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7[J].Front Cell Dev Biol,2021,9:638382.
|
[13] |
Deng X, Wang L, Zhai Y, et al. RIPK1 plays a crucial role in maintaining regulatory T-Cell homeostasis by inhibiting both RIPK3-and FADD-mediated cell death[J]. Cell Mol Immunol, 2024, 21(1):80-90.
|
[15] |
Tong L, Yu H, Huang X, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches[J].Bone Res,2022, 10:60.
|
[14] |
Cheng J, Duan X, Fu X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7[J].Front Cell Dev Biol,2021,9:638382.
|
[16] |
Jiang X, Stockwell B R, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22:266-282.
|
[15] |
Tong L, Yu H, Huang X, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches[J].Bone Res,2022, 10:60.
|
[16] |
Jiang X, Stockwell B R, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22:266-282.
|
[17] |
Xie Y, Zhao G, Lei X, et al. Advances in the regulatory mechanisms of mTOR in necroptosis[J]. Front Immunol, 2023,14:1297408.
|
[17] |
Xie Y, Zhao G, Lei X, et al. Advances in the regulatory mechanisms of mTOR in necroptosis[J]. Front Immunol, 2023,14:1297408.
|
[18] |
Valenti M T, Dalle Carbonare L, Zipeto D, et al. Control of the autophagy pathway in osteoarthritis: key regulators, therapeutic targets and therapeutic strategies[J].Int J Mol Sci,2021,22:2700.
|
[18] |
Valenti M T, Dalle Carbonare L, Zipeto D, et al. Control of the autophagy pathway in osteoarthritis: key regulators, therapeutic targets and therapeutic strategies[J].Int J Mol Sci,2021,22:2700.
|
[19] |
Rizzo MG, Best TM, Huard J, et al. Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents[J]. Cells, 2023,12(10):1421.
|
[19] |
Rizzo MG, Best TM, Huard J, et al. Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents[J]. Cells, 2023,12(10):1421.
|
[20] |
Chen D, Kim DJ, Shen J, et al. Runx2 plays a central role in osteoarthritis development[J].J Orthop Transl,2020,23:132-139
|
[20] |
Chen D, Kim DJ, Shen J, et al. Runx2 plays a central role in osteoarthritis development[J].J Orthop Transl,2020,23:132-139
|
[21] |
Zheng L, Zhang Z, Sheng P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis[J].Ageing Res Rev, 2021,66:101249
|
[21] |
Zheng L, Zhang Z, Sheng P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis[J].Ageing Res Rev, 2021,66:101249
|
[22] |
Hu Y, Chen X, Wang S, et al. Subchondral bone microenvironment in osteoarthritis and pain[J].Bone Res,2021,9:20
|
[22] |
Hu Y, Chen X, Wang S, et al. Subchondral bone microenvironment in osteoarthritis and pain[J].Bone Res,2021,9:20
|
[23] |
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: role in synovial fibrosis associated with osteoarthritis[J].Wound Repair Regen,2021,29:642-649
|
[23] |
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: role in synovial fibrosis associated with osteoarthritis[J].Wound Repair Regen,2021,29:642-649
|
[24] |
Han S. Osteoarthritis year in review 2022: biology[J]. Osteoarthritis Cartilage, 2022,30(12):1575-1582.
|
[24] |
Han S. Osteoarthritis year in review 2022: biology[J]. Osteoarthritis Cartilage, 2022,30(12):1575-1582.
|
[25] |
Wang Y, Li D L, Zhang X B, et al. Increase of TNFα-stimulated osteoarthritic chondrocytes apoptosis and decrease of matrix metalloproteinases 9 by NF-κB inhibition[J].Biomed Environ Sci,2013,26:277-283.
|
[25] |
Wang Y, Li D L, Zhang X B, et al. Increase of TNFα-stimulated osteoarthritic chondrocytes apoptosis and decrease of matrix metalloproteinases 9 by NF-κB inhibition[J].Biomed Environ Sci,2013,26:277-283.
|
[26] |
Liu Y X, Wang G D, Wang X, et al. Effects of TLR-2/NF-κB signaling pathway on the occurrence of degenerative knee osteoarthritis: an in vivo and in vitro study[J].Oncotarget,2017,8:38602-38617.
|
[26] |
Liu Y X, Wang G D, Wang X, et al. Effects of TLR-2/NF-κB signaling pathway on the occurrence of degenerative knee osteoarthritis: an in vivo and in vitro study[J].Oncotarget,2017,8:38602-38617.
|
[27] |
Wood M J, Miller R E, Malfait A M. The genesis of pain in osteoarthritis: inflammation as a mediator of osteoarthritis pain[J]. Clin Geriatr Med, 2022,38(2):221-238.
|
[27] |
Wood M J, Miller R E, Malfait A M. The genesis of pain in osteoarthritis: inflammation as a mediator of osteoarthritis pain[J]. Clin Geriatr Med, 2022,38(2):221-238.
|
[28] |
Boer C G, Hatzikotoulas K, Southam L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations[J]. Cell, 2021,184(18):4784-4818.
|
[28] |
Boer C G, Hatzikotoulas K, Southam L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations[J]. Cell, 2021,184(18):4784-4818.
|
[29] |
Tuerlings M, Hoolwerff M, Houtman E, et al. RNA sequencing reveals interacting key determinants of osteoarthritis acting in subchondral bone and articular cartilage: identification of il11 and chadl as attractive treatment targets[J]. Arthritis Rheumatol, 2021,73(5):789-799.
|
[29] |
Tuerlings M, Hoolwerff M, Houtman E, et al. RNA sequencing reveals interacting key determinants of osteoarthritis acting in subchondral bone and articular cartilage: identification of il11 and chadl as attractive treatment targets[J]. Arthritis Rheumatol, 2021,73(5):789-799.
|
[30] |
Steinberg J, Southam L, Roumeliotis T I, et al. A molecular quantitative trait locus map for osteoarthritis[J]. Nat Commun, 2021, 12(1):1309.
|
[30] |
Steinberg J, Southam L, Roumeliotis T I, et al. A molecular quantitative trait locus map for osteoarthritis[J]. Nat Commun, 2021, 12(1):1309.
|
[31] |
Swahn H, Li K, Duffy T, et al. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus[J]. Ann Rheum Dis, 2023,82(3):403-415.
|
[31] |
Swahn H, Li K, Duffy T, et al. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus[J]. Ann Rheum Dis, 2023,82(3):403-415.
|
[32] |
Wang X, Ning Y, Zhang P, et al.Comparison of the major cell populations among osteoarthritis, kashin-beck disease and healthy chondrocytes by single-cell RNA-seq analysis[J].Cell Death Dis, 2021, 12:551
|
[32] |
Wang X, Ning Y, Zhang P, et al.Comparison of the major cell populations among osteoarthritis, kashin-beck disease and healthy chondrocytes by single-cell RNA-seq analysis[J].Cell Death Dis, 2021, 12:551
|
[33] |
Rannou F, Pelletier J P, Martel-Pelletier J. Efficacy and safety of topical NSAIDs in the management of osteoarthritis: evidence from real-life setting trials and surveys[J].Semin Arthritis Rheum,2016,45:S18-S21.
|
[33] |
Rannou F, Pelletier J P, Martel-Pelletier J. Efficacy and safety of topical NSAIDs in the management of osteoarthritis: evidence from real-life setting trials and surveys[J].Semin Arthritis Rheum,2016,45:S18-S21.
|
[34] |
Fang P, Zhang L X, Hu Y, et al. Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells[J]. Eur Rev Med Pharmacol Sci, 2019, 23(23):10459-10469.
|
[34] |
Fang P, Zhang L X, Hu Y, et al. Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells[J]. Eur Rev Med Pharmacol Sci, 2019, 23(23):10459-10469.
|
[35] |
Huang H, Lin Y, Jiang Y, et al. Recombinant protein drugs-based intra articular drug delivery systems for osteoarthritis therapy[J]. Eur J Pharm Biopharm, 2023, 183:33-46.
|
[35] |
Huang H, Lin Y, Jiang Y, et al. Recombinant protein drugs-based intra articular drug delivery systems for osteoarthritis therapy[J]. Eur J Pharm Biopharm, 2023, 183:33-46.
|
[36] |
Geiger B C, Wang S, Padera R F Jr, et al. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis[J]. Sci Transl Med, 2018,10(469):eaat8800.
|
[36] |
Geiger B C, Wang S, Padera R F Jr, et al. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis[J]. Sci Transl Med, 2018,10(469):eaat8800.
|
[37] |
Seol D, Choe H H, Zheng H, et al. Intra-articular adeno-associated virus-mediated proteoglycan 4 gene therapy for preventing posttraumatic osteoarthritis[J]. Hum Gene Ther, 2022, 33(9-10):529-540.
|
[37] |
Seol D, Choe H H, Zheng H, et al. Intra-articular adeno-associated virus-mediated proteoglycan 4 gene therapy for preventing posttraumatic osteoarthritis[J]. Hum Gene Ther, 2022, 33(9-10):529-540.
|
[38] |
Zhang D W, Yang Q S, Zhu J Y, et al. Amelioration of osteoarthritis by intra-articular hyaluronan synthase 2 gene therapy[J]. Med Hypotheses, 2007, 69(5):1111-3.
|
[38] |
Zhang D W, Yang Q S, Zhu J Y, et al. Amelioration of osteoarthritis by intra-articular hyaluronan synthase 2 gene therapy[J]. Med Hypotheses, 2007, 69(5):1111-3.
|
[39] |
Chen X, Shi Y, Xue P,et al. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3[J]. Arthritis Res Ther, 2020, 22(1):256.
|
[39] |
Chen X, Shi Y, Xue P,et al. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3[J]. Arthritis Res Ther, 2020, 22(1):256.
|
[40] |
Feng X, Pan J, Li J, et al. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR[J].Aging,2020, 12:1087-1103.
|
[40] |
Feng X, Pan J, Li J, et al. Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR[J].Aging,2020, 12:1087-1103.
|
[41] |
Liu S, Pan Y, Li T, et al. The role of regulated programmed cell death in osteoarthritis: from pathogenesis to therapy[J]. Int J Mol Sci, 2023, 24(6):5364.
|
[41] |
Liu S, Pan Y, Li T, et al. The role of regulated programmed cell death in osteoarthritis: from pathogenesis to therapy[J]. Int J Mol Sci, 2023, 24(6):5364.
|
|
|