Lasedrager B, Tip A, Verhoeven J. Theory of Cerenkov and transition radiation from layered structures[J]. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 2000, 61(5B):5767-5778.
[4]
Axelsson J, Davis S C, Gladstone D J, et al. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence[J]. Med Phys, 2011, 38(7): 4127-4132.
[5]
Beattie B J, Thorek D L, Schmidtlein C R, et al. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides[J]. PLos One, 2012, 7(2): e31402.
[6]
Mitchell G S, Gill R K, Boucher D L, et al. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging[J]. Philos Trans A Math Phys Enq Sci, 2011, 369(1955): 4605-4619.
[7]
Ackerman N L, Graves E E. The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides[J]. Phys Med Biol, 2012, 57(3): 771-783.
[8]
Liu H, Ren G, Miao Z, et al. Molecular optical imaging with radioactive probes[J]. PLos One, 2010, 5(3): e9470.
[9]
Yoo W J, Han K T, Shin S H, et al. Development of a Cerenkov radiation sensor to detect low-energy beta-particles[J]. Appl Radist Isot, 2013, 81: 196-200.
[10]
Chin P T, Welling M M., Meskers S C, et al. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence[J]. Eur J Nucl Med Mol Imaging,2013,40(8):1283-1291.
[11]
Das S, Grimm J, Thorek D L. Cerenkov imaging[J]. Adv Cancer Res, 2014, 124: 213-234.
[12]
Robertson R, Germanos M S, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers[J]. Phys Med Biol, 2009, 54(16): N355-365.
[13]
Ruggiero A, Holland J P, Lewis J S, et al. Cerenkov luminescence imaging of medical isotopes[J]. J Nucl Med, 2010, 51(7): 1123-1130.
[14]
Yang W, Qin W, Hu Z, et al. Comparison of Cerenkov luminescence imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 Cells[J]. Nucl Med Biol, 2012, 39(7):948-953.
[15]
Boschi F, Calderan L, D’Ambrosio D, et al. In vivo 18F-FDG tumour uptake measurements in small animals using Cerenkov radiation[J]. Eur J Nucl Med Mol Imaging, 2011, 38(1): 120-127.
[16]
Xu Y, Chang E, Liu H, et al. Proof-of-Concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging[J]. J Nucl Med, 2012, 53(2): 312-317.
[17]
Holland J P, Normand G, Ruggiero A, et al. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions[J]. Mol Imaging, 2011, 10(3): 177-186, 1-3.
[18]
Thorek D L, Abou D S, Beattie B J, et al. Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG[J]. J Nucl Med, 2012, 53(9): 1438-1445.
[19]
Liu H, Carpenter C M, Jiang H, et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study[J]. J Nucl Med, 2012, 53(10):1579–1584.
[20]
Kothapalli S R, Liu H, Liao J C, et al. Endoscopic imaging of Cerenkov luminescence[J]. Biomed Opt Express, 2012, 3(6): 1215-1225.
[21]
Li C, Mitchell G S, Cherry S R. Cerenkov luminescence tomography for small-animal imaging[J]. Opt Lett, 2010, 35(7): 1109-1111.
[22]
Hu Z, Liang J, Yang W, et al. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation[J]. Opt Express, 2010, 18(24): 24441-24450.
[23]
Zhong J, Qin C, Yang X, et al. Fast-Specific tomography imaging via Cerenkov emission[J]. Mol Imaging Biol, 2011, 14(3): 286-292.
[24]
Spinelli A E, Kuo C, Rice B W, et al. Multispectral Cerenkov luminescence tomography for small animal optical imaging[J]. Opt Express, 2011,19(13):12605-12618.
[25]
Weissleder R, Ntziachristos V. Shedding light onto live molecular targets[J]. Nat Med, 2003,9(1):123-128.
Lewis M A, Kodibagkar V D, Oz O K, et al. On the potential for molecular imaging with Cerenkov Luminescence[J]. Opt Lett, 2010, 35(23): 3889-3891.
[28]
Dothager R S, Goiffon R J, Jackson E, et al. Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems[J]. PLoS One, 2010,5(10):13-300.
[29]
Liu H, Zhang X, Xing B, et al. Radiation –luminescence-excited quantum dots for in vivo multiplexed optical imaging[J]. Small, 2010, 6: 1087-1091
[30]
Carpenter C M, Sun C, Pratx G, et al. Radioluminescent nanophosphors enable multiplexed small-animal imaging[J].Opt Express, 2012,20(11):11 598-11 604.
[31]
Sun X, Huang X, Guo J, et al. Self-illuminating 64Cu-Doped CdSe/ZnS nanocrystals for in vivo Tumor Imaging[J]. J Am Chem Soc, 2014, 136(5): 1706-1709.
[32]
Ma X, Kang F, Xu F, et al. Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles[J]. Plos One, 2013, 8(10): e77926.
[33]
Thorek D L, Ogirala A, Beattie B J, et al. Quantitative imaging of disease signatures through radioactive decay signal conversion[J]. Nat Med, 2013, 19(10): 1345-1350.
[34]
Spinelli A E, Ferdeghini M, Cavedon C, et al. First human Cerenkography[J]. J Biomed Opt, 2013,18(2):502.
[35]
Thorek D L, Riedl C C, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG[J].J Nucl Med, 2014, 55(1): 95-98.