van Baren N, Chambost H, Ferrant A, et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells[J]. Br J Haematol, 1998,102(5):1376-1379.
[2]
Schenk T, Stengel S, Goellner S, et al. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies[J]. Genes Chromosomes Cancer, 2007,46(9):796-804.
[3]
Goodison S, Urquidi V. The cancer testis antigen PRAME as a biomarker for solid tumor cancer management[J]. Biomark Med, 2012,6(5):629-632.
[4]
Ding K, Wang XM, Fu R, et al. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance[J]. Cancer Biol Med, 2012,9(1):73-76.
[5]
Zhang W, Chi K, Zhang Y, et al. Correlation between preferentially expressed antigen of melanoma and tumour necrosis factor-related apoptosis-inducing ligand gene expression in different types of leukaemia patients[J]. Acta Haematol, 2013,130(4):297-304.
[6]
Oehler V G, Guthrie K A, Cummings C L, et al. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells[J]. Blood, 2009,114(15):3299-3308.
[7]
Luetkens T, Schafhausen P, Uhlich F, et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia[J]. Leuk Res, 2010,34(12):1647-1655.
[8]
Steinbach D, Hermann J, Viehmann S, et al. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia[J]. Cancer Genet Cytogenet, 2002,133(2):118-123.
[9]
Abdelmalak C A, Yahya R S, Elghannam D M, et al. PRAME gene expression in childhood acute lymphoblastic leukemia: impact on prognosis[J]. Clin Lab, 2014,60(1):55-61.
[10]
Tanaka N, Wang Y H, Shiseki M, et al. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells[J]. Leuk Res, 2011,35(9):1219-1225.
[11]
Tajeddine N, Gala JL, Louis M, et al. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo[J]. Cancer Res, 2005,65(16):7348-7355.
[12]
Kewitz S, Staege M S. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells[J]. PLoS One, 2013,8(2):e55897.
[13]
Qian J, Zhu ZH, Lin J, et al. Hypomethylation of PRAME promoter is associated with poor prognosis in myelodysplastic syndrome[J]. Br J Haematol, 2011,154(1):153-155.
[14]
Sun Y, Urquidi V, Goodison S. Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach[J]. Breast Cancer Res Treat, 2010,119(3):593-599.
[15]
Sun Y, Todorovic S, Goodison S. Local-learning-based feature selection for high-dimensional data analysis[J]. IEEE Trans Pattern Anal Mach Intell, 2010,32(9):1610-1626.
[16]
Doolan P, Clynes M, Kennedy S, et al. Prevalence and prognostic and predictive relevance of PRAME in breast cancer[J]. Breast Cancer Res Treat, 2008,109(2):359-365.
[17]
Epping M T, Hart A A, Glas A M, et al. PRAME expression and clinical outcome of breast cancer[J]. Br J Cancer, 2008,99(3):398-403.
[18]
Bankovic J, Stojsic J, Jovanovic D, et al. Identification of genes associated with non-small-cell lung cancer promotion and progression[J]. Lung cancer (Amsterdam, Netherlands), 2010,67(2):151-159.
[19]
Babiak A, Steinhauser M, Gotz M, et al. Frequent T cell responses against immunogenic targets in lung cancer patients for targeted immunotherapy[J]. Oncol Rep, 2014,31(1):384-390.
[20]
De Pas T, Giovannini M, Rescigno M, et al. Vaccines in non-small cell lung cancer: rationale, combination strategies and update on clinical trials[J]. Crit Rev Oncol Hematol, 2012,83(3):432-443.
[21]
Jin S, Shen J N, Guo Q C, et al. 2-D DIGE and MALDI-TOF-MS analysis of the serum proteome in human osteosarcoma[J]. Proteomics Clin Appl, 2007,1(3):272-285.
[22]
Toledo S R, Zago M A, Oliveira I D, et al. Insights on PRAME and osteosarcoma by means of gene expression profiling[J]. J Orthop Sci, 2011,16(4):458-466.
[23]
Cuffel C, Rivals J P, Zaugg Y, et al. Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma[J]. Int J Cancer, 2011,128(11):2625-2634.
[24]
Szczepanski M J, DeLeo A B, Luczak M, et al. PRAME expression in head and neck cancer correlates with markers of poor prognosis and might help in selecting candidates for retinoid chemoprevention in pre-malignant lesions[J]. Oral Oncol, 2013,49(2):144-151.
[25]
Neumann E, Engelsberg A, Decker J, et al. Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies[J]. Cancer Res, 1998,58(18):4090-4095.
[26]
Dannenmann S R, Hermanns T, Bransi A, et al. Spontaneous peripheral T-cell responses toward the tumor-associated antigen cyclin D1 in patients with clear cell renal cell carcinoma[J]. Cancer Immunol Res, 2013,1(5):288-295.
[27]
Ringhoffer M, Muller C R, Schenk A, et al. Simultaneous expression of T-cell activating antigens in renal cell carcinoma: implications for specific immunotherapy[J]. J Urol, 2004,171(6 Pt 1):2456-2460.
[28]
Dyrskjot L, Zieger K, Kissow L T, et al. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma[J]. Br J Cancer, 2012,107(1):116-122.
[29]
Altvater B, Kailayangiri S, Theimann N, et al. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individuals[J].Cancer Immunol Immunother, 2014,63(10):1047-1060.
[30]
Mahlendorf D E, Staege M S. Characterization of Ewing sarcoma associated cancer/testis antigens[J]. Cancer Biol Ther, 2013,14(3):254-261.
[31]
Hemminger J A, Toland A E, 0000000202711792 A O, et al. Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma[J]. Mod Pathol, 2014,27(9):1238-1245.
[32]
Brenne K, Nymoen D A, Reich R, et al. PRAME (preferentially expressed antigen of melanoma) is a novel marker for differentiating serous carcinoma from malignant mesothelioma[J]. Am J Clin Pathol, 2012,137(2):240-247.
[33]
Nalini V, Segu R, Deepa P R, et al. Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis[J]. Bioinform Biol Insights, 2013,7:289-306.
[34]
Vulcani-Freitas T M, Saba-Silva N, Cappellano A, et al. PRAME gene expression profile in medulloblastoma[J]. Arq Neuropsiquiatr, 2011,69(1):9-12.
[35]
Epping M T, Wang L, Edel M J, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling[J]. Cell, 2005,122(6):835-847.
Dolle P. Developmental expression of retinoic acid receptors (RARs) [J]. Nucl Recept Signal, 2009,7:e006.
[38]
Mark M, Ghyselinck N B, Chambon P. Function of retinoic acid receptors during embryonic development[J]. Nucl Recept Signal, 2009,7:e002.
[39]
Argiris A, Lee SC, Feinstein T, et al. Serum biomarkers as potential predictors of antitumor activity of cetuximab-containing therapy for locally advanced head and neck cancer[J]. Oral Oncol, 2011,47(10):961-966.
[40]
De Carvalho D D, Mello B P, Pereira W O, et al. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy[J]. Curr Mol Med, 2013,13(2):296-304.
[41]
Steinbach D, Viehmann S, Zintl F, et al. PRAME gene expression in childhood acute lymphoblastic leukemia[J]. Cancer Genet Cytogenet, 2002,138(1):89-91.
[42]
Passeron T, Valencia J C, Namiki T, et al. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid[J]. J Clin Invest, 2009,119(4):954-963.
[43]
Ortmann C A, Eisele L, Nuckel H, et al. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia[J]. Ann Hematol, 2008,87(10):809-818.
[44]
Sakurai E, Maesawa C, Shibazaki M, et al. Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells[J]. Int J Oncol, 2011,39(3):665-672.
[45]
Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer[J]. Cell, 2006,124(4):823-835.
[46]
Balkwill F, Charles K A, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease[J]. Cancer Cell, 2005,7(3):211-217.
[47]
Ueno H, Klechevsky E, Morita R, et al. Dendritic cell subsets in health and disease[J]. Immunol Rev, 2007,219:118-142.
[48]
Groothuis T A, Neefjes J. The many roads to cross-presentation[J]. J Exp Med, 2005,202(10):1313-1318.
[49]
Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors[J].Adv Immunol, 2006,90:51-81.
[50]
Campoli M, Ferrone S, Zea A H, et al. Mechanisms of tumor evasion[J].Cancer Treat Res, 2005,123:61-88.
[51]
Yao J, Caballero O L, Yung W K, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers[J]. Cancer Immunol Res, 2014,2(4):371-379.
[52]
Beard R E, Abate-Daga D, Rosati S F, et al. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy[J].Clin Cancer Res, 2013,19(18):4941-4950.
[53]
Saldanha-Araujo F, Haddad R, Zanette D L, et al. Cancer/Testis antigen expression on mesenchymal stem cells isolated from different tissues[J]. Anticancer Res, 2010,30(12):5023-5027.