Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9):948-959.
[2]
Sun J, Cui J, He Q, et al. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes [J]. Mol Aspects Med, 2015, 42:105-118.
[3]
Cui J, Chen W, Sun J, et al. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos[J]. J Biol Chem, 2015, 290(47):28131-28140.
[4]
Haataja L, Manickam N, Soliman A, et al. Disulfide mispairing during proinsulin folding in the endoplasmic reticulum[J]. Diabetes, 2016,65(4):1050-1060.
[5]
Liu M, Li Y, Cavener D, et al. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum[J]. J Biol Chem, 2005, 280(14):13209-13212.
[6]
Riahi Y, Wikstrom J D, Bachar-Wikstrom E, et al. Erratum to: autophagy is a major regulator of beta cell insulin homeostasis[J]. Diabetologia, 2016, 59(7):1575-1576.
[7]
He K, Cunningham C N, Manickam N, et al. PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis[J]. Mol Biol Cell, 2015,26(19):3413-3423.
[8]
Ma Y, Hendershot L M. ER chaperone functions during normal and stress conditions[J]. J Chem Neuroanat, 2004, 28(1-2):51-65.
[9]
Volchuk A, Ron D. The endoplasmic reticulum stress response in the pancreatic β-cell [J].Diabetes Obes Metab, 2010, 12 (Suppl 2): 48-57.
[10]
Wang M, Ye R, Barron E, et al. Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis[J]. Cell Death Differ, 2010, 17(3):488-498.
[11]
Papa F R. Endoplasmic reticulum stress, pancreatic β-cell degeneration, and diabetes[J].Cold Spring Harb Perspect Med, 2012, 2(9): a007666.
[12]
Harding H P, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review [J]. Diabetes, 2002, 51(Suppl 3):S455-461.
[13]
Delépine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome[J]. Nat Genet, 2000, 25(4):406-409.
[14]
Harding H P, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival[J]. Mol Cell, 2001, 7(6):1153-1163.
[15]
Cavener D R, Gupta S, McGrath B C. PERK in beta cell biology and insulin biogenesis[J]. Trends Endocrinol Metab, 2010, 21(12): 714-721.
[16]
Gupta S, McGrath B, Cavener D R. PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway [J]. Diabetes, 2010, 59(8):1937-1947.
[17]
Harding H P, Zyryanova A F, Ron D. Uncoupling proteostasis and development in vitro with a small molecule inhibitor of the pancreatic endoplasmic reticulum kinase, PERK[J]. J Biol Chem, 2012, 287(53):44338-44344.
[18]
Pirot P, Ortis F, Cnop M, et al. Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells[J]. Diabetes, 2007, 56(4):1069-1077.
[19]
Marciniak S J, Yun C Y, Oyadomari S, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum[J]. Genes Dev, 2004, 18(24):3066-3077.
[20]
Yamaguchi H, Wang H G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells [J]. J Biol Chem, 2004, 279(44):45495-45502.
[21]
Bi M, Naczki C, Koritzinsky M, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth[J]. EMBO J, 2005,24(19):3470-3481.
[22]
McCullough K D, Martindale J L, Klotz L O, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state[J]. Mol Cell Biol, 2001, 21(4):1249-1259.
[23]
Shamu C E, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus [J]. EMBO J, 1996, 15(12): 3028-3039.
[24]
Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1[J]. Science, 2000,2 87(5453):664-666.
[25]
Corbett J A. Insulin biosynthesis: the IREny of it all[J]. Cell Metab, 2006, 4(3):175-176.
[26]
Han D, Lerner A G, Vande W L, et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates[J]. Cell, 2009, 138(3): 562-575.
[27]
Qiu Y, Mao T, Zhang Y, et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1alpha activation in pancreatic beta cells[J]. Sci Signal, 2010, 3(106):ra7.
[28]
Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats[J]. Genes Dev, 2002,1 6(11):1345-1355.
[29]
Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis[J]. J Cell Biol, 2000, 150(4):887-894.
[30]
Ghosh R, Wang L, Wang E S, et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress [J].Cell,2014,158(3):534-548.
[31]
Adachi Y, Yamamoto K, Okada T, et al. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum[J]. Cell Struct Funct, 2008, 33(1):75-89.
[32]
Yamaguchi Y, Larkin D, Lara-Lemus R, et al. Endoplasmic reticulum (ER) chaperone regulation and survival of cells compensating for deficiency in the ER stress response kinase, PERK[J]. J Biol Chem, 2008, 283(25):17020-17029.
[33]
Chevet E. From stress specificity to basal necessity: ATF6 uprising. Focus on “Pancreatic β-cells depend on basal expression of active ATF6α-p50 for cell survival even under nonstress conditions”[J].Am J Physiol Cell Physiol, 2012, 302(7):C966-967.
[34]
Usui M, Yamaguchi S, Tanji Y, et al. Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance[J].Metabolism,2012,61(8):1118-1128.
[35]
Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription[J]. Genes Dev, 1992,6(3):439-453.
[36]
Christianson J C, Shaler T A, Tyler R E, et al. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD[J]. Nat Cell Biol, 2008, 10(3):272-282.
[37]
Cormier J H, Tamura T, Sunryd J C, et al. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex[J]. Mol Cell, 2009, 34(5):627-633.
[38]
Kim W, Spear E D, Ng D T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation[J]. Mol Cell, 2005,1 9(6):753-764.
[39]
Stein A, Ruggiano A, Carvalho P, et al. Key steps in ERAD of luminal ER proteins reconstituted with purified components[J]. Cell, 2014,158(6):1375-1388.
[40]
Zhang T, Xu Y, Liu Y, et al. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum[J]. Mol Biol Cell, 2015, 26(24):4438-4450.
[41]
Mueller B, Lilley B N, Ploegh H L. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER[J]. J Cell Biol, 2006, 175(2): 261-270.
[42]
Jeong H, Sim H J, Song E K, et al. Crystal structure of SEL1L: insight into the roles of SLR motifs in ERAD pathway[J]. Sci Rep, 2016, 6:20261
[43]
Williams J M, Inoue T, Banks L, et al. The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation[J]. Mol Biol Cell, 2013, 24(6): 785-795.
[44]
Sun S, Shi G, Sha H, et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation[J].Nat Cell Biol, 2015, 17(12): 1546-1555.
[45]
Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes[J]. Science, 2006,313(5790):1137-1140.