Sakurai T, Kudo M, Fukuta N, et al. Involvement of angiotensin II and reactive oxygen species in pancreatic fibrosis[J]. Pancreatology, 2011, 11 (Suppl 2): 7-13.
[2]
Yadav D, Lowenfels A B. The epidemiology of pancreatitis and pancreatic cancer[J]. Gastroenterology, 2013, 144(6): 1252-1261.
[3]
Wang L W, Li Z S, Li S D, et al. Prevalence and clinical features of chronic pancreatitis in China: a retrospective multicenter analysis over 10 years[J]. Pancreas, 2009, 38(3): 248-254.
[4]
Omary M B, Lugea A, Lowe A W, et al. The pancreatic stellate cell: a star on the rise in pancreatic diseases[J]. J Clin Invest, 2007,117(1): 50-59.
[5]
Bynigeri R R, Jakkampudi A, Jangala R, et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology[J]. World J Gastroenterol, 2017, 23(3): 382-405.
[6]
Apte M, Pirola R, Wilson J. The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells[J]. Antioxid Redox Signal, 2011, 15(10): 2711-2722.
[7]
Erkan M, Adler G, Apte M V, et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research[J]. Gut, 2012, 61(2): 172-178.
[8]
Andoh A, Takaya H, Saotome T, et al. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts[J]. Gastroenterology, 2000, 119(1): 211-219.
[9]
Ulmasov B, Neuschwander-Tetri B A, Lai J, et al. Inhibitors of Arg-Gly-Asp-Binding integrins reduce development of pancreatic fibrosis in mice[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4): 499-518.
[10]
Shimizu K. Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis[J]. J Gastroenterol Hepatol, 2008, 23(Suppl 1): S119-S121.
Tahara H, Sato K, Yamazaki Y, et al. Transforming growth factor-α activates pancreatic stellate cells and may be involved in matrix metalloproteinase-1 upregulation[J]. Lab Invest, 2013, 93(6): 720-732.
[13]
Qian Z Y, Peng Q, Zhang Z W, et al. Roles of Smad3 and Smad7 in rat pancreatic stellate cells activated by transforming growth factor-beta 1[J]. Hepatobiliary Pancreat Dis Int, 2010, 9(5): 531-536.
[14]
Yoo B M, Yeo M, Oh T Y, et al. Amelioration of pancreatic fibrosis in mice with defective TGF-beta signaling[J]. Pancreas, 2005, 30(3): e71-e79.
[15]
Aoki H, Ohnishi H, Hama K, et al. Autocrine loop between TGF-beta1 and IL-1beta through Smad3- and ERK-dependent pathways in rat pancreatic stellate cells[J]. Am J Physiol Cell Physiol, 2006, 290(4): C1100-C1108.
[16]
Aoki H, Ohnishi H, Hama K, et al. Existence of autocrine loop between interleukin-6 and transforming growth factor-beta1 in activated rat pancreatic stellate cells[J]. J Cell Biochem, 2006, 99(1): 221-228.
[17]
Shek F W, Benyon R C, Walker F M, et al. Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis[J]. Am J Pathol, 2002, 160(5): 1787-1798.
Liu H, Yu K, Ma P, et al. Long noncoding RNA myocardial infarction-associated transcript regulated the pancreatic stellate cell activation to promote the fibrosis process of chronic pancreatitis[J]. J Cell Biochem, 2018 .
Tsang S W, Zhang H, Lin C, et al. Rhein, a natural anthraquinone derivative, attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis[J]. PLoS One, 2013, 8(12): e82201.
[26]
Liu L, Zhu Y, Nu M, et al. Neuronal transforming growth factor beta signaling via SMAD3 contributes to pain in animal models of chronic pancreatitis[J]. Gastroenterology, 2018, 154(8): 2252-2265.e2.
Szabo G, Mandrekar P, Oak S, et al. Effect of ethanol on inflammatory responses. Implications for pancreatitis[J]. Pancreatology, 2007, 7(2-3): 115-123.
[29]
Vonlaufen A, Phillips P A, Xu Z, et al. Withdrawal of alcohol promotes regression while continued alcohol intake promotes persistence of LPS-induced pancreatic injury in alcohol-fed rats[J]. Gut, 2011, 60(2): 238-246.
[30]
Pan L F, Yu L, Wang L M, et al. The toll-like receptor 4 antagonist transforming growth factor-β-activated kinase(TAK)-242 attenuates taurocholate-induced oxidative stress through regulating mitochondrial function in mice pancreatic acinar cells [J]. J Surg Res, 2016, 206(2): 298-306.
[31]
Pan L F, Yu L, Wang L M, et al. The Toll-like receptor 4 antagonist TAK-242 protects against chronic pancreatitis in rats[J]. Mol Med Rep, 2017, 16(4): 3863-3868.
Lu M, Zhang Q, Chen K, et al. The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells[J]. Phytomedicine, 2017, 36: 153-159.
[35]
Wang Y S, Li Y Y, Wang L H, et al. Tanshinone IIA attenuates chronic pancreatitis-induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord[J]. Pain Physician, 2015, 18(4): E615-E628.
[36]
Komar H M, Serpa G, Kerscher C, et al. Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo [J]. Sci Rep, 2017, 7(1): 1787.
Gukovsky I, Gukovskaya A S. Impaired autophagy triggers chronic pancreatitis: lessons from pancreas-specific atg5 knockout mice[J]. Gastroenterology, 2015, 148(3): 501-505.
[40]
Diakopoulos K N, Lesina M, Wörmann S, et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes [J]. Gastroenterology, 2015, 148(3): 626-638.e17.
[41]
Antonucci L, Fagman J B, Kim J Y, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress[J]. Proc Natl Acad Sci U S A, 2015, 112(45): E6166-E6174.
[42]
Li N, Wu X, Holzer R G, et al. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice [J]. J Clin Invest, 2013, 123(5): 2231-2243.
[43]
Mareninova O A, Sendler M, Malla S R, et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(6): 678-694.
[44]
Li C X, Cui L H, Zhuo Y Z, et al. Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells[J]. Life Sci, 2018, 208: 276-283.
[45]
Xu M, Wang G, Zhou H, et al. TGF-β1-miR-200a-PTEN induces epithelial-mesenchymal transition and fibrosis of pancreatic stellate cells[J]. Mol Cell Biochem, 2017, 431(1-2): 161-168.
[46]
Li L, Wang G, Hu J S, et al. RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis[J]. Cell Death Dis, 2018, 9(10): 952.
[47]
Cui L, Li C, Gao G, et al. FTY720 inhibits the activation of pancreatic stellate cells by promoting apoptosis and suppressing autophagy via the AMPK/mTOR pathway[J]. Life Sci, 2019, 217: 243-250.
[48]
Cui L H, Li C X, Zhuo Y Z, et al. Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway[J]. Chem Biol Interact, 2019, 300: 18-26.
[49]
Xue R, Wang J, Yang L, et al. Coenzyme Q10 ameliorates pancreatic fibrosis via the ROS-Triggered mTOR signaling pathway [J]. Oxid Med Cell Longev, 2019, 2019: 8039694.
[50]
Xue R, Yang J, Wu J, et al. Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway[J]. Oncotarget, 2017, 8(54): 92300-92311.
[51]
Berna M J, Seiz O, Nast J F, et al. CCK1 and CCK2 receptors are expressed on pancreatic stellate cells and induce collagen production[J]. J Biol Chem, 2010, 285(50): 38905-38914.
[52]
Tsang S W, Zhang H J, Chen Y G, et al. Eruberin A, a natural flavanol glycoside, exerts anti-fibrotic action on pancreatic stellate cells[J]. Cell Physiol Biochem, 2015, 36(6): 2433-2446.
[53]
Boulling A, Masson E, Zou W B, et al. Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34Ser)-containing haplotype[J]. Hum Mutat, 2017, 38(8): 1014-1024.
[54]
Qian Y Y, Zou W B, Chen J M, et al. Identification of a novel SPINK1 deletion in a teenager with idiopathic chronic pancreatitis[J]. Dig Liver Dis, 2017, 49(8): 941-943.
[55]
Wang D, Xin L, Lin J H, et al. Identifying miRNA-mRNA regulation network of chronic pancreatitis based on the significant functional expression[J]. Medicine (Baltimore), 2017, 96(21): e6668.
[56]
Hegyi E, Sahin-Tóth M. Genetic risk in chronic pancreatitis: The trypsin-dependent pathway [J]. Dig Dis Sci, 2017, 62(7): 1692-1701.
[57]
Weiss F U, Skube M E, Lerch M M. Chronic pancreatitis: an update on genetic risk factors[J]. Curr Opin Gastroenterol, 2018, 34(5): 322-329.