Markowski M C, Boorjian S A, Burton J P, et al. The microbiome and genitourinary cancer: a collaborative review[J]. Eur Urol, 2019, 75(4): 637-646.
[2]
Dudley J C, Schroers-Martin J, Lazzareschi D V, et al. Detection and surveillance of bladder cancer using urine tumor DNA[J]. Cancer Discov, 2019, 9(4): 500-509.
[3]
Yong C, Stewart G D, Frezza C. Oncometabolites in renal cancer[J]. Nat Rev Nephrol, 2020, 16(3): 156-172.
[4]
Auchus R J, Sharifi N. Sex Hormones and Prostate Cancer[J]. Annu Rev Med, 2020, 71(1): 33-45.
[5]
Hashimoto Y, Greco T M, and Cristea I M. Contribution of mass spectrometry-based proteomics to discoveries in developmental biology[J]. Adv Exp Med Biol, 2019, 1140(9): 143-154.
[6]
Bittremieux W, Tabb D L, Impens F, et al. Quality control in mass spectrometry-based proteomics[J]. Mass Spectrom Rev, 2018, 37(5): 697-711.
[7]
Chen Y T, Chen C L, Chen H W, et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology[J]. J Proteome Res, 2010, 9(11): 5803-5815.
[8]
Li C, Li H, Zhang T, et al. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis[J]. Biochem Biophys Res Commun, 2014, 446(4): 1047-1052.
[9]
Chen C L, Chung T, Wu C C, et al. Comparative Tissue proteomics of microdissected specimens reveals novel candidate biomarkers of bladder cancer[J]. Mol Cell Proteomics, 2015, 14(9): 2466-2478.
[10]
Li F, Chen D N, He C W, et al. Identification of urinary Gc-globulin as a novel biomarker for bladder cancer by two-dimensional fluorescent differential gel electrophoresis (2D-DIGE)[J]. J Proteomics, 2012, 77(12): 225-236.
[11]
Frantzi M, van Kessel K E, Zwarthoff E C, et al. Development and validation of urine-based peptide biomarker panels for detecting bladder cancer in a multi-center study[J]. Clin Cancer Res, 2016, 22(16): 4077-4086.
[12]
Krochmal M, van Kessel K E M, Zwarthoff E C, et al. Urinary peptide panel for prognostic assessment of bladder cancer relapse[J]. Sci Rep, 2019, 9(1): 7635.
[13]
Lemańska-Perek A, Lis-Kuberka J, Lepczyński A, et al. Potential plasma biomarkers of bladder cancer identified by proteomic analysis: a pilot study[J]. Adv Clin Exp Med, 2019, 28(3): 339-346.
[14]
Stroggilos R, Mokou M, Latosinska A, et al. Proteome-based classification of nonmuscle invasive bladder cancer[J]. Int J Cancer, 2020, 46(1): 281-294.
[15]
Witzke K E, Groβerueschkamp F, Jütte H, et al. Integrated fourier transform infrared imaging and proteomics for identification of a candidate histochemical biomarker in bladder cancer[J]. Am J Pathol, 2019, 189(3): 619-631.
[16]
Di M A, Batruch I, Brown M D, et al. Searching for prognostic biomarkers for small renal masses in the urinary proteome[J]. Int J Cancer, 2020, 146(8): 2315-2325.
[17]
Stella M, Chinello C, Cazzaniga A, et al. Histology-guided proteomic analysis to investigate the molecular profiles of clear cell renal cell carcinoma grades[J]. J Proteomics, 2019, 191(1): 38-47.
[18]
Kaysheva A L, Kopylov A T, Kushlinskii N E, et al. Comparative analysis of blood plasma proteome in patients with renal cell carcinoma[J]. Bull Exp Biol Med, 2019, 167(1): 91-96.
[19]
Chinello C, Stella M, Piga I, et al. Proteomics of liquid biopsies: depicting RCC infiltration into the renal vein by MS analysis of urine and plasma[J]. J Proteomics, 2019, 191(1): 29-37.
Ueda K, Tatsuguchi A, Saichi N, et al. Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide[J]. J Proteome Res, 2013, 12(10): 4497-4506.
[22]
Cheng H L, Huang H J, Ou B Y, et al. Urinary CD14 as a potential biomarker for benign prostatic hyperplasia-discovery by combining MALDI-TOF-based biostatistics and ESI-MS/MS-based stable-isotope labeling[J]. Proteomics Clin Appl, 2011, 5: 121-132.
[23]
Ummanni R, Duscharla D, Barett C, et al. Prostate cancer-associated autoantibodies in serum against tumor-associated antigens as potential new biomarkers[J]. J Proteomics, 2015, 119(4): 218-229.
[24]
Kohli M, Oberg A L, Mahoney D W, et al. Serum proteomics on the basis of discovery of predictive biomarkers of response to androgen deprivation therapy in advanced prostate cancer[J]. Clin Genitourin Cancer, 2019, 17(4): 248-253.
[25]
Al-Ruwaili J A, Larkin S E T, Zeidan B A, et al. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis[J]. Cancer Genomics Proteomics, 2010, 7(2): 93-103.
[26]
Fujita K, Kume H, Matsuzaki K, et al. Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer[J]. Sci Rep, 2017, 7(2): 42961.
[27]
Kwon O K, Ha Y S, Lee J N, et al. Comparative proteome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteogenomics[J]. Cancer Genomics Proteomics, 2019, 16(4): 273-286.
[28]
Kwon O K, Jeon J M, Sung E, et al. Comparative secretome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteomics[J]. Cancer Genomics Proteomics, 2018, 15(4): 279-290.
[29]
Totten S M, Adusumilli R, Kullolli M, et al. Multi-lectin affinity chromatography and quantitative proteomic analysis reveal differential glycoform levels between prostate cancer and benign prostatic hyperplasia sera[J]. Sci Rep, 2018, 8(1): 6509.
[30]
Latonen L, Afyounian E, Jylhä A, et al. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression[J]. Nat Commun, 2018, 9(1): 1176.