|
|
小儿术后神经认知障碍防治研究进展 |
杨康宁1, 李春秀2, 郭航3 综述, 马亚群3 审校 |
1.621053,四川绵阳四〇四医院麻醉科; 2.100069,首都医科大学附属北京佑安医院麻醉科; 3.100700 北京,解放军总医院第七医学中心麻醉科 |
|
[1] |
Alam A, Hana Z, Jin Z, et al. Surgery, neuroinflammation and cognitive impairment[J]. EBio Med, 2018, 37: 547-556.
|
[2] |
Liu Y, Yin Y. Emerging roles of immune cells in postoperative cognitive dysfunction[J]. Mediators Inflamm, 2018, 18: 6215350.
|
[3] |
王 晨, 张 宏, 沈 浩. 麻醉药导致术后认知功能障碍的海马内机制研究进展[J]. 中国当代医药, 2018, 25(13): 20-23.
|
[4] |
Petrella C, di Certo M G, Gabanella F, et al. Mediterranean diet, brain and muscle: olive polyphenols and resveratrol protection in neurodegenerative and neuromuscular disorders[J]. Curr Med Chem, 2021, 28(37): 7595-7613.
|
[5] |
Gim S A, Park D J, Kang J B, et al. Identification of regulated proteins by resveratrol in glutamate-induced cortical injury of newborn rats [J]. J Vet Med Sci, 2021, 83(4): 724-733.
|
[6] |
Tang X L, Wang X, Fang G, et al. Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-κB pathway in neonatal mice [J]. J Nutr Biochem, 2021, 90: 108579.
|
[7] |
Nabavi S F, Braidy N, Gortzi O, et al. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review [J]. Brain Res Bull, 2015, 119(Pt A): 1-11.
|
[8] |
Wang Y, Wang C, Zhang Y, et al. Preadministration of luteoline attenuates neonatal sevoflurane-induced neurotoxicity in mice[J]. Acta Histochem, 2019, 121(4): 500-507.
|
[9] |
Yuan J, Cui G, Li W, et al. Propofol enhances hemoglobin-induced cytotoxicity in neurons[J]. Anesth Analg, 2016, 122(4): 1024-1030.
|
[10] |
Zhao Y, Zhang H. Propofol and sevoflurane combined with remifentanil on the pain index, inflammatory factors and postoperative cognitive function of spine fracture patients[J]. Exp Ther Med, 2018, 15(4): 3775-3780.
|
[11] |
Zhang J Q, Xu W Y, Xu C Q, et al. Neonatal propofol and etomidate exposure enhanceinhibitory synaptic transmission in hippocampal cornus ammonis 1 pyramidal neurons [J]. Chin Med J (Engl), 2016, 129(22): 2714-2724.
|
[12] |
Li J, Guo M, Liu Y, et al. Both GSK-3β/CRMP2 and CDK5/CRMP2 pathways participate in the protection of dexmedetomidine against propofol-induced learning and memory impairment in neonatal rats[J]. Toxicol Sci, 2019, 171(1): 193-210.
|
[13] |
Lei D, Sha Y, Wen S, et al. Dexmedetomidine may reduce IL-6 level and the risk of postoperative cognitive dysfunction in patients after surgery: a meta-analysis[J]. Dose Response, 2020,18(1): 1559325820902345.
|
[14] |
Yang W, Kong L S, Zhu X X, et al. Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: a PRISMA-compliant systematic review and meta-analysis[J]. Medicine (Baltimore), 2019, 98(18): e15383.
|
[15] |
Maze M, Laitio T. Neuroprotective properties of xenon[J]. Mol Neurobiol, 2020, 57(1): 118-124.
|
[16] |
Wilhelm S, Ma D, Maze M, et al. Effects of xenon on in vitro and in vivo models of neuronal injury[J]. Anesthesiology, 2002, 96(6): 1485-1491.
|
[17] |
Gill H, Pickering A E. The effects of xenon on sevoflurane anesthesia-induced acidosis and brain cell apoptosis in immature rats[J]. Paediatr Anaesth, 2021, 31(3): 372-374.
|
[18] |
Shi Y, Wang G, Li J, et al. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats[J]. Neuroreport, 2017, 28(17): 1170-1175.
|
[19] |
Yonamine R, Satoh Y, Kodama M, et al. Coadministration of hydrogen gas as part of the carrier gas mixture suppresses neuronal apoptosis and subsequent behavioral deficits caused by neonatal exposure to sevoflurane in mice[J]. Anesthesiology, 2013, 118(1): 105-113.
|
[20] |
Jeong H, Chung J Y, Ko I G, et al. Effect of polydeoxyribonucleotide on lipopolysaccharide and sevoflurane-induced postoperative cognitive dysfunction in human neuronal SH-SY5Y cells [J]. Int Neurourol J, 2019, 23(Suppl 2): 93-101.
|
[21] |
Zhang Y, Lu P, Liang F, et al. Cyclophilin D contributes to anesthesia neurotoxicity in the developing brain [J]. Front Cell Dev Biol, 2020, 7: 396.
|
[22] |
Chen Y, Deng Y, Zhang B, et al. Deregulation of brain insulin signaling in Alzheimer's disease [J]. Neurosci Bull, 2014, 30(2): 282-294.
|
[23] |
Blázquez E, Velázquez E, Hurtado-Carneiro V, et al. Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer's disease[J]. Front Endocrinol, 2014,5: 161.
|
[24] |
Dai C L, Li H, Hu X, et al. Neonatal exposure to anesthesia leads to cognitive deficits in old age: prevention with intranasal administration of insulin in mice[J]. Neurotox Res, 2020, 38(2): 299-311.
|
[25] |
中华医学会外科学分会, 中华医学会麻醉学分会.加速康复外科中国专家共识及路径管理指南(2018版)[J]. 中国实用外科杂志, 2018, 38(1): 1-20.
|
[26] |
余 霞, 刘一卓. 多学科合作快速康复外科模式在小儿外科手术患者中的应用效果[J]. 当代护士(中旬刊), 2019, 26(1): 64-66.
|
[1] |
董慧领, 张崇, 王倩, 齐英花, 陈庆国, 张长青. 加速康复外科理念对骨科高龄单膝置换患者术后恢复效果的影响[J]. 武警医学, 2019, 30(5): 427-430. |
[2] |
于红艳, 曹葆强, 张培松, 李宗寅. FTS护理对乳腺癌改良根治术患者负性情绪及术后康复效果的影响[J]. 武警医学, 2019, 30(1): 31-34. |
[3] |
朱平增;韩雪萍;尹继云;孙振涛. 瑞芬太尼、芬太尼用于小儿麻醉对血流动力学及应激影响的比较[J]. , 2007, 18(08): 596-599. |
|
|
|
|