Ogurtsova K, da Rocha F J D, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040[J].Diabetes Res Clin Pract, 2017,128:40-50.
Savastano M C,Rispoli M,Lumbroso B,et al. Fluorescein angiography versus optical coherence tomography angiography: FA vs OCTA Italian study[J].Eur J Ophthalmol, 2021,31(2):514-520.
[6]
Invernizzi A,Cozzi M,Staurenghi G.Optical coherence tomography and optical coherence tomography angiography in uveitis: a review[J].Clin Exp Ophthalmol, 2019, 47(3):357-371.
Ehlers J P,Jiang A C,Boss J D,et al.Quantitative utra-widefield angiography and diabetic retinopathy severity: an assessment of panretinal leakage index, ischemic index and microaneurysm count [J].Ophthalmology, 2019, 126(11):1527-1532.
[12]
Thompson I A,Durrani A K,Patel S.Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy[J]. Eye (Lond), 2019,33(4):648-652.
[13]
Ishibazawa A,Nagaoka T,Takahashi A,et al.Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study [J].Am J Ophthalmol, 2015, 160(1):35-44.
[14]
Hamada M,Ohkoshi K,Inagaki K,et al.Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images [J].Jpn J Ophthalmol, 2018, 62(2):168-175.
Schaal K B, Munk M R, Wyssmueller I,et al.Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging [J]. Retina, 2019,39(1):79-87.
[19]
Shimouchi A, Ishibazawa A, Ishiko S, et al. A proposed classification of intraretinal microvascular abnormalities in diabetic retinopathy following panretinal photocoagulation [J].Invest Ophthalmol Vis Sci, 2020,61(3):34.
Pan J, Chen D, Yang X, et al. Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography[J].Am J Ophthalmol, 2018,192:146-156.
[22]
Khalid H,Schwartz R,Nicholson L,et al. Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy[J].Br J Ophthalmol, 2021,105(1):118-123.
[23]
Jia Y,Bailey S T,Hwang T S,et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J].Proc Natl Acad Sci USA, 2015, 112(18):2395-2402.
[24]
Shiihara H,Terasaki H,Sonoda S,et al. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography[J]. Sci Rep, 2018, 8(1):10143.
Dimitrova G,Chihara E,Takahashi H, et al. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2017,58(1):190-196.
[27]
Hirano T,Kitahara J,Toriyama Y,et al. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy[J].Br J Ophthalmol, 2019, 103(2):216-221.
[28]
Tang F Y,Ng D S,Lam A,et al.Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes[J].Sci Rep,2017, 7(1):2575.
[29]
Wang G, Li M, Yun Z,et al.A novel multiple subdivision-based algorithm for quantitative assessment of retinal vascular tortuosity[J].Exp Biol Med (Maywood), 2021, 246(20):2222-2229.
[30]
Cao D,Yang D,Huang Z,et al.Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[J].Acta Diabetol, 2018, 55(5):469-477.
[31]
Yasin A A,Moult E M, Shahzad R,et al.Quantifying microvascular changes using oct angiography in diabetic eyes without clinical evidence of retinopathy[J].Ophthalmol Retina, 2018, 2(5):418-427.
[32]
Sun Z,Tang F,Wong R,et al.OCT Angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study[J].Ophthalmology, 2019,126(12):1675-1684.
[33]
Kim A Y,Chu Z,Shahidzadeh A,et al.Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J].Invest Ophthalmol Vis Sci, 2016, 57(9):362-370.
[34]
Tang F Y,Chan E O,Sun Z,et al.Clinically relevant factors associated with quantitative optical coherence tomography angiography metrics in deep capillary plexus in patients with diabetes[J].Eye Vis (Lond), 2020, 7:7.
[35]
Johannesen S K,Viken J N,Vergmann A S,et al.Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review[J].Acta Ophthalmol, 2019, 97(1):7-14.
[36]
Toto L,D'Aloisio R,Di Nicola M,et al. Qualitative and quantitative assessment of vascular changes in diabetic macular edema after dexamethasone implant using optical coherence tomography angiography [J].Int J Mol Sci, 2017, 18(6):1181.
[37]
Carlo T E,Chin A T,Joseph T,et al.Distinguishing diabetic macular edema from capillary nonperfusion using optical coherence tomography angiography [J].Ophthalmic Surg Lasers Imaging Retina,2016, 47(2):108-114.
[38]
Lee J,Moon B G,Cho A R,et al.Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response[J].Ophthalmology, 2016, 123(11):2368-2375.
[39]
Ran A R,Cheung C Y,Wang X,et al.Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis[J].Lancet Digit Health, 2019, 1(4):e172-e182.
[40]
Milea D,Najjar R P,Zhubo J,et al.Artificial intelligence to detect papilledema from ocular fundus photographs[J].N Engl J Med, 2020, 382(18):1687-1695.
[41]
Guo Y,Camino A,Wang J,et al.MEDnet, a neural network for automated detection of avascular area in OCT angiography [J].Biomed Opt Express, 2018, 9(11):5147-5158.
[42]
Guo Y,Hormel T T,Xiong H,et al.Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography [J].Biomed Opt Express, 2019, 10(7):3257-3268.