汤绍芳, 何庆. 环状RNA与糖尿病微血管病变相关性的研究进展[J]. 武警医学, 2024, 35(2): 174-176.
TANG Shaofan, HE Qing. Research progress on relationship between cyclic RNA and microvascular disease in diabetes. Med. J. Chin. Peop. Armed Poli. Forc., 2024, 35(2): 174-176.
He Z, Zhu Q. Circular RNAs: emerging roles and new insights in human cancers[J]. Biomed Pharmacother, 2023,165:115217.
[1]
Yang L, Wilusz JE, Chen LL. Biogenesis and regulatory roles of circular RNAs[J]. Annu Rev Cell Dev Biol, 2022,6(38):263-289.
[5]
Wang M, Xie F, Lin J, et al. Diagnostic and prognostic value of circulating circRNAs in cancer[J]. Front Med (Lausanne), 2021,18(8):649383.
[2]
Tu C, Wang L, Wei L. RNA-binding proteins in diabetic microangiopathy[J]. J Clin Lab Anal, 2022,36(5): e24407.
[6]
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1):87-97.
[3]
Liu CX, Chen L L. Circular RNAs: characterization, cellular roles, and applications[J]. Cell, 2022, 185(12):2016-2034.
[7]
The Lancet Diabetes Endocrinology. Under the lens: diabetic retinopathy[J]. Lancet Diabetes Endocrinol, 2020,8(11):869.
[4]
He Z, Zhu Q. Circular RNAs: emerging roles and new insights in human cancers[J]. Biomed Pharmacother, 2023,165:115217.
[8]
He M, Zhou R, Liu S, et al. Circular RNAs: potential star molecules involved in diabetic retinopathy[J]. Curr Eye Res, 2021,46(3):277-283.
[5]
Wang M, Xie F, Lin J, et al. Diagnostic and prognostic value of circulating circRNAs in cancer[J]. Front Med (Lausanne), 2021,18(8):649383.
[9]
Liu F, Huang J, Zhang C, et al. Regulation of Podocyte Injury by CircHIPK3/FUS Complex in Diabetic Kidney Disease[J]. Int J Biol Sci, 2022, 18(15):5624-5640.
[6]
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1):87-97.
[10]
He S, Gu C, Su T, et al. Research progress of circRNAs in inflammatory mechanisms of diabetic retinopathy: an emerging star with potential therapeutic targets[J]. Curr Eye Res, 2022,47(2):165-178.
[7]
The Lancet Diabetes Endocrinology. Under the lens: diabetic retinopathy[J]. Lancet Diabetes Endocrinol, 2020,8(11):869.
[11]
Liu C, Ge HM, Liu BH, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci U S A, 2019, 116(15):7455-7464.
[8]
He M, Zhou R, Liu S, et al. Circular RNAs: potential star molecules involved in diabetic retinopathy[J]. Curr Eye Res, 2021,46(3):277-283.
[12]
Yan Q, He X, Kuang G, et al. CircRNA cPWWP2A: an emerging player in diabetes mellitus[J]. J Cell Commun Signal, 2020, 14(3):351-353.
[9]
Liu F, Huang J, Zhang C, et al. Regulation of Podocyte Injury by CircHIPK3/FUS Complex in Diabetic Kidney Disease[J]. Int J Biol Sci, 2022, 18(15):5624-5640.
[13]
Akhtar M, Taha N M, Nauman A, et al. Diabetic kidney disease: past and present[J]. Adv Anat Pathol, 2020,27(2):87-97.
[10]
He S, Gu C, Su T, et al. Research progress of circRNAs in inflammatory mechanisms of diabetic retinopathy: an emerging star with potential therapeutic targets[J]. Curr Eye Res, 2022,47(2):165-178.
[14]
Thomas H Y, Ford Versypt A N. Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation[J]. J Biol Eng, 2022,16(1):19-32.
[11]
Liu C, Ge HM, Liu BH, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci U S A, 2019, 116(15):7455-7464.
[15]
Ren H, Wang Q. Non-Coding RNA and diabetic kidney disease[J]. DNA Cell Biol, 2021, 40(4):553-567.
[12]
Yan Q, He X, Kuang G, et al. CircRNA cPWWP2A: an emerging player in diabetes mellitus[J]. J Cell Commun Signal, 2020, 14(3):351-353.
[16]
Liu Y, Zhang L, Wang Y, et al. Exploring the role of circRNA in diabetic kidney disease from a novel perspective: focusing on both glomeruli and tubuli[J]. DNA Cell Biol, 2021,40(11):1369-1380.
[13]
Akhtar M, Taha N M, Nauman A, et al. Diabetic kidney disease: past and present[J]. Adv Anat Pathol, 2020,27(2):87-97.
[17]
Bai S, Xiong X, Tang B, et al. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis[J]. Cell Death Dis, 2020,11(11):1008.
[14]
Thomas H Y, Ford Versypt A N. Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation[J]. J Biol Eng, 2022,16(1):19-32.
[18]
Li G, Qin Y, Qin S, et al. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells[J]. Life Sci, 2020, 259:118269.
[15]
Ren H, Wang Q. Non-Coding RNA and diabetic kidney disease[J]. DNA Cell Biol, 2021, 40(4):553-567.
[19]
Wang Y, Qi Y, Ji T, et al. Circ_LARP4 regulates high glucose-induced cell proliferation, apoptosis, and fibrosis in mouse mesangial cells[J]. Gene, 2021,765:145114.
[16]
Liu Y, Zhang L, Wang Y, et al. Exploring the role of circRNA in diabetic kidney disease from a novel perspective: focusing on both glomeruli and tubuli[J]. DNA Cell Biol, 2021,40(11):1369-1380.
Li G, Qin Y, Qin S, et al. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells[J]. Life Sci, 2020, 259:118269.
[22]
Liu R, Zhang M, Ge Y. Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185[J]. Gene, 2021,765:145065.
[19]
Wang Y, Qi Y, Ji T, et al. Circ_LARP4 regulates high glucose-induced cell proliferation, apoptosis, and fibrosis in mouse mesangial cells[J]. Gene, 2021,765:145114.
[23]
Wang Y, Mo Y, Peng M, et al. The influence of circular RNAs on autophagy and disease progression[J]. Autophagy, 2022,18(2):240-253.
Wei M, Li L, Zhang Y, et al. Downregulated circular RNA zRANB1 mediates Wnt5a/β-Catenin signaling to promote neuropathic pain via miR-24-3p/LPAR3 axis in CCI rat models[J]. Gene, 2020, 761:145038.
Zhang Y, Gao T, Li X, et al. Circ_0005075 targeting miR-151a-3p promotes neuropathic pain in CCI rats via inducing NOTCH2 expression[J]. Gene,2021,767:145079.
[22]
Liu R, Zhang M, Ge Y. Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185[J]. Gene, 2021,765:145065.
[23]
Wang Y, Mo Y, Peng M, et al. The influence of circular RNAs on autophagy and disease progression[J]. Autophagy, 2022,18(2):240-253.
[24]
Wei M, Li L, Zhang Y, et al. Downregulated circular RNA zRANB1 mediates Wnt5a/β-Catenin signaling to promote neuropathic pain via miR-24-3p/LPAR3 axis in CCI rat models[J]. Gene, 2020, 761:145038.
[25]
Zhang Y, Gao T, Li X, et al. Circ_0005075 targeting miR-151a-3p promotes neuropathic pain in CCI rats via inducing NOTCH2 expression[J]. Gene,2021,767:145079.