高升润, 李芸, 李雨衡, 王艳庆, 高成杰. 基于机器学习算法构建术后谵妄风险预测模型的研究进展[J]. 武警医学, 2024, 35(2): 181-184.
GAO Shengrun, LI Yun, LI Yuheng, et al . Research progress in constructing postoperative delirium risk prediction model based on machine learning algorithm. Med. J. Chin. Peop. Armed Poli. Forc., 2024, 35(2): 181-184.
Choi R Y,Coyner A S,Kalpathy-Cramer J,et al.Introduction to machine learning, neural networks,and deep learning[J].Transl Vis Sci Technol,2020,9(2):14.
[1]
Shaji P,McCabe C.A narrative review of preventive measures for postoperative delirium in older adults[J].Br J Nurs,2021,30(6):367-373.
Hua Y,Chen S,Xiong X,et al.Risk factors for postoperative delirium in elderly urological patients:a meta-analysis[J].Medicine (Baltimore),2022,101(38):e30696.
[4]
Choi R Y,Coyner A S,Kalpathy-Cramer J,et al.Introduction to machine learning, neural networks,and deep learning[J].Transl Vis Sci Technol,2020,9(2):14.
[9]
Zhang M,Zhang X,Gao L,et al.Incidence, predictors and health outcomes of delirium in very old hospitalized patients: a prospective cohort study[J].BMC Geriatr,2022,22(1):262.
Arita A,Takahashi H,Ogino T,et al.Grip strength as a predictor of postoperative delirium in patients with colorectal cancers[J].Ann Gastroenterol Surg, 2021,6(2):265-272.
[8]
Hua Y,Chen S,Xiong X,et al.Risk factors for postoperative delirium in elderly urological patients:a meta-analysis[J].Medicine (Baltimore),2022,101(38):e30696.
[12]
Onuma H,InoseH,Yoshii T,et al.Preoperative risk factors for delirium in patients aged≥75 years undergoing spinal surgery:a retrospective study[J].J Int Med Res,2020,48(10):30.
[9]
Zhang M,Zhang X,Gao L,et al.Incidence, predictors and health outcomes of delirium in very old hospitalized patients: a prospective cohort study[J].BMC Geriatr,2022,22(1):262.
[13]
Reisinger M,Reininghaus E Z,Biasi J,et al.Delirium-associated medication in people at risk:a systematic update review,meta-analyses,andgrade-profiles[J].Acta Psychiatr Scand,2023,147(1):16-42.
Arita A,Takahashi H,Ogino T,et al.Grip strength as a predictor of postoperative delirium in patients with colorectal cancers[J].Ann Gastroenterol Surg, 2021,6(2):265-272.
Onuma H,InoseH,Yoshii T,et al.Preoperative risk factors for delirium in patients aged≥75 years undergoing spinal surgery:a retrospective study[J].J Int Med Res,2020,48(10):30.
Reisinger M,Reininghaus E Z,Biasi J,et al.Delirium-associated medication in people at risk:a systematic update review,meta-analyses,andgrade-profiles[J].Acta Psychiatr Scand,2023,147(1):16-42.
[18]
Li B,Ju J,Zhao J,et al.A nomogram to predict delirium after hip replacement in elderly patients with femoral neck fractures[J].Orthop Surg,2022,14(12):3195-3200.
Chen J,Ji X,Xing H.Risk factors and a nomogram model for postoperative delirium in elderly gastric cancer patients after laparoscopic gastrectomy[J].World J Surg Oncol,2022,20(1):319.
Malloy E J,Spiegelman D,Eisen E A.Comparing measures of model selection for penalized splines in Cox models[J].Comput Stat Data Anal,2009,53(7):2605-2616.
Li B,Ju J,Zhao J,et al.A nomogram to predict delirium after hip replacement in elderly patients with femoral neck fractures[J].Orthop Surg,2022,14(12):3195-3200.
Chen J,Ji X,Xing H.Risk factors and a nomogram model for postoperative delirium in elderly gastric cancer patients after laparoscopic gastrectomy[J].World J Surg Oncol,2022,20(1):319.
[24]
Liu Y,Shen W,Tian Z.Usingmachine learning algorithms to predict high-risk factors for postoperative delirium in elderly patients[J].Clin Interv Aging,2023,18:157-168.
[20]
Malloy E J,Spiegelman D,Eisen E A.Comparing measures of model selection for penalized splines in Cox models[J].Comput Stat Data Anal,2009,53(7):2605-2616.
[25]
Röhr V,Blankertz B,Radtke F M,et al.Machine-learning model predicting postoperative delirium in older patients using intraoperative frontal electroencephalographic signatures[J].Front Aging Neurosci,2022,14:911088.
Bishara A,Chiu C,Whitlock E L,et al.Postoperative delirium prediction using machine learning models and preoperative electronic health record data[J].BMC Anesthesiol,2022,22(1):8.
Jung J W,Hwang S,Ko S,et al.A machine-learning model to predict postoperative delirium following knee arthroplasty using electronic health records[J].BMC Psychiatry,2022, 22(1):436.
[24]
Liu Y,Shen W,Tian Z.Usingmachine learning algorithms to predict high-risk factors for postoperative delirium in elderly patients[J].Clin Interv Aging,2023,18:157-168.
[28]
Wang Y,Lei L,Ji M,et al.Predicting postoperative delirium after microvascular decompression surgery with machine learning[J].J Clin Anesth,2020, 66:109.
[25]
Röhr V,Blankertz B,Radtke F M,et al.Machine-learning model predicting postoperative delirium in older patients using intraoperative frontal electroencephalographic signatures[J].Front Aging Neurosci,2022,14:911088.
[29]
Hu X Y,Liu H,Zhao X,et al.Automated machine learning-based model predicts postoperative delirium using readily extractable perioperative collected electronic data[J].CNS Neurosci Ther,2022,28(4):608-618.
[26]
Bishara A,Chiu C,Whitlock E L,et al.Postoperative delirium prediction using machine learning models and preoperative electronic health record data[J].BMC Anesthesiol,2022,22(1):8.
[30]
Moon K J,Son C S,Lee J H,et al.The development of a web-based app employing machine learning for delirium prevention in long-term care facilities in South Korea[J].BMC Med Inform Decis Mak,2022,22(1):220.
[27]
Jung J W,Hwang S,Ko S,et al.A machine-learning model to predict postoperative delirium following knee arthroplasty using electronic health records[J].BMC Psychiatry,2022, 22(1):436.
[28]
Wang Y,Lei L,Ji M,et al.Predicting postoperative delirium after microvascular decompression surgery with machine learning[J].J Clin Anesth,2020, 66:109.
[29]
Hu X Y,Liu H,Zhao X,et al.Automated machine learning-based model predicts postoperative delirium using readily extractable perioperative collected electronic data[J].CNS Neurosci Ther,2022,28(4):608-618.
[30]
Moon K J,Son C S,Lee J H,et al.The development of a web-based app employing machine learning for delirium prevention in long-term care facilities in South Korea[J].BMC Med Inform Decis Mak,2022,22(1):220.