Di Tommaso N, Gasbarrini A, Ponziani F R. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021,18(23):12836.
[1]
Shao Y Y, Guo Y, Feng X J, et al. Oridonin attenuates TNBS-induced post-inflammatory irritable bowel syndrome via PXR/NF-kappaB signaling[J]. Inflammation, 2021,44(2): 645-658.
[8]
Lian P, Braber S, Varasteh S, et al. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture[J]. Sci Rep, 2021,11(1): 13186.
Liu W, Fan X, Jian B, et al. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis[J]. Front Microbiol, 2023,14: 1289102.
[5]
Li Y, Wang Y, Shi F, et al. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells[J]. Gut Microbes, 2022,14(1): 2096994.
[10]
Dowdell A S, Cartwright I M, Goldberg M S, et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis[J]. Mol Biol Cell, 2020,31(20): 2249-2258.
[11]
Progatzky F, Shapiro M, Chng S H, et al. Regulation of intestinal immunity and tissue repair by enteric glia[J]. Nature, 2021,599(7883): 125-130.
Xiao W, Wang W, Chen W, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation[J]. Mol Neurobiol, 2014,50(2): 274-289.
[7]
Di Tommaso N, Gasbarrini A, Ponziani F R. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021,18(23):12836.
[13]
Sun L, Li X, Guan H, et al. A Novel Role of A(2A)R in the maintenance of intestinal barrier function of enteric glia from hypoxia-induced injury by combining with mGluR5[J]. Front Pharmacol, 2021,12: 633403.
[8]
Lian P, Braber S, Varasteh S, et al. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture[J]. Sci Rep, 2021,11(1): 13186.
[14]
Pral L P, Fachi J L, Corrêa R O, et al. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J]. Trends Immunol, 2021,42(7): 604-621.
[9]
Liu W, Fan X, Jian B, et al. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis[J]. Front Microbiol, 2023,14: 1289102.
Dowdell A S, Cartwright I M, Goldberg M S, et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis[J]. Mol Biol Cell, 2020,31(20): 2249-2258.
[16]
Hu Y, Pan Z, Huang Z, et al. Gut Microbiome-targeted modulations regulate metabolic profiles and alleviate altitude-related cardiac hypertrophy in rats[J]. Microbiol Spectr, 2022,10(1): e0105321.
[11]
Progatzky F, Shapiro M, Chng S H, et al. Regulation of intestinal immunity and tissue repair by enteric glia[J]. Nature, 2021,599(7883): 125-130.
[17]
Ailizire A, Wang X, Ma Y, et al. How hypoxia affects microbiota metabolism in mice[J]. Front Microbiol, 2023,14: 1244519.
[12]
Xiao W, Wang W, Chen W, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation[J]. Mol Neurobiol, 2014,50(2): 274-289.
[13]
Sun L, Li X, Guan H, et al. A Novel Role of A(2A)R in the maintenance of intestinal barrier function of enteric glia from hypoxia-induced injury by combining with mGluR5[J]. Front Pharmacol, 2021,12: 633403.
[18]
Pearce S C, Karl J P, Weber G J. Effects of short-chain fatty acids on intestinal function in an enteroid model of hypoxia[J]. Front Physiol, 2022,13: 1056233.
[14]
Pral L P, Fachi J L, Corrêa R O, et al. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J]. Trends Immunol, 2021,42(7): 604-621.
[19]
Mehandru S, Colombel J F. The intestinal barrier, an arbitrator turned provocateur in IBD[J]. Nat Rev Gastroenterol Hepatol, 2021,18(2): 83-84.
Russo F, Chimienti G, Riezzo G, et al. Adipose tissue-derived biomarkers of intestinal barrier functions for the characterization of diarrhoea-predominant IBS[J]. Dis Markers, 2018,2018: 1827937.
[16]
Hu Y, Pan Z, Huang Z, et al. Gut Microbiome-targeted modulations regulate metabolic profiles and alleviate altitude-related cardiac hypertrophy in rats[J]. Microbiol Spectr, 2022,10(1): e0105321.
[21]
Barbara G, Grover M, Bercik P, et al. Rome foundation working team report on post-infection irritable bowel syndrome[J]. Gastroenterology, 2019,156(1): 46-58.
[17]
Ailizire A, Wang X, Ma Y, et al. How hypoxia affects microbiota metabolism in mice[J]. Front Microbiol, 2023,14: 1244519.
[22]
Jiang Y, Song J, Xu Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway[J]. Life Sci, 2021,275: 119254.
[18]
Pearce S C, Karl J P, Weber G J. Effects of short-chain fatty acids on intestinal function in an enteroid model of hypoxia[J]. Front Physiol, 2022,13: 1056233.
[23]
Xie Y, Zhan X, Tu J, et al. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J]. J Ethnopharmacol, 2021,272: 113925.
[19]
Mehandru S, Colombel J F. The intestinal barrier, an arbitrator turned provocateur in IBD[J]. Nat Rev Gastroenterol Hepatol, 2021,18(2): 83-84.
[24]
Filippone A, Ardizzone A, Bova V, et al. A combination of xyloglucan, pea protein and chia seed ameliorates intestinal barrier integrity and mucosa functionality in a rat model of constipation-predominant irritable bowel syndrome[J]. J Clin Med, 2022,11(23):7073.
[20]
Russo F, Chimienti G, Riezzo G, et al. Adipose tissue-derived biomarkers of intestinal barrier functions for the characterization of diarrhoea-predominant IBS[J]. Dis Markers, 2018,2018: 1827937.
[25]
Awad K, Barmeyer C, Bojarski C, et al. Impaired Intestinal permeability of tricellular tight junctions in patients with irritable bowel syndrome with mixed bowel habits (IBS-M)[J]. Cells, 2023,12(2):236.
[21]
Barbara G, Grover M, Bercik P, et al. Rome foundation working team report on post-infection irritable bowel syndrome[J]. Gastroenterology, 2019,156(1): 46-58.
[26]
Nguyen V T, Taheri N, Chandra A, et al. Aging of enteric neuromuscular systems in gastrointestinal tract[J]. Neurogastroenterol Motil, 2022,34(6): e14352.
[22]
Jiang Y, Song J, Xu Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway[J]. Life Sci, 2021,275: 119254.
[27]
Li Y, Li Y R, Jin Y, et al. Involvement of enteric glial cells in colonic motility in a rat model of irritable bowel syndrome with predominant diarrhea[J]. J Chem Neuroanat, 2023,128: 102235.
[23]
Xie Y, Zhan X, Tu J, et al. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J]. J Ethnopharmacol, 2021,272: 113925.
[28]
Shi X, Hu Y, Zhang B, et al. Ameliorating effects and mechanisms of transcutaneous auricular vagal nerve stimulation on abdominal pain and constipation[J]. JCI Insight, 2021,6(14):e150052.
[24]
Filippone A, Ardizzone A, Bova V, et al. A combination of xyloglucan, pea protein and chia seed ameliorates intestinal barrier integrity and mucosa functionality in a rat model of constipation-predominant irritable bowel syndrome[J]. J Clin Med, 2022,11(23):7073.
[29]
Mogilevski T, Rosella S, Aziz Q, et al. Transcutaneous vagal nerve stimulation protects against stress-induced intestinal barrier dysfunction in healthy adults[J]. Neurogastroenterol Motil, 2022,34(10): e14382.
[25]
Awad K, Barmeyer C, Bojarski C, et al. Impaired Intestinal permeability of tricellular tight junctions in patients with irritable bowel syndrome with mixed bowel habits (IBS-M)[J]. Cells, 2023,12(2):236.
[30]
Bonaz B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction[J]. Neurogastroenterol Motil, 2022,34(10): e14456.
[26]
Nguyen V T, Taheri N, Chandra A, et al. Aging of enteric neuromuscular systems in gastrointestinal tract[J]. Neurogastroenterol Motil, 2022,34(6): e14352.
[31]
Ishioh M, Nozu T, Miyagishi S, et al. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats[J]. Biochem Pharmacol, 2022,206: 115331.
[27]
Li Y, Li Y R, Jin Y, et al. Involvement of enteric glial cells in colonic motility in a rat model of irritable bowel syndrome with predominant diarrhea[J]. J Chem Neuroanat, 2023,128: 102235.
[32]
Ford A C, Sperber A D, Corsetti M, et al. Irritable bowel syndrome[J]. Lancet, 2020,396(10263): 1675-1688.
[28]
Shi X, Hu Y, Zhang B, et al. Ameliorating effects and mechanisms of transcutaneous auricular vagal nerve stimulation on abdominal pain and constipation[J]. JCI Insight, 2021,6(14):e150052.
[33]
Rengarajan S, Knoop K A, Rengarajan A, et al. A potential role for stress-induced microbial alterations in iga-associated irritable bowel syndrome with diarrhea[J]. Cell Rep Med, 2020,1(7):100124.
[29]
Mogilevski T, Rosella S, Aziz Q, et al. Transcutaneous vagal nerve stimulation protects against stress-induced intestinal barrier dysfunction in healthy adults[J]. Neurogastroenterol Motil, 2022,34(10): e14382.
[34]
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome[J]. Dig Dis Sci, 2020,65(3): 829-839.
[30]
Bonaz B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction[J]. Neurogastroenterol Motil, 2022,34(10): e14456.
[35]
Xiao L, Liu Q, Luo M, et al. Gut microbiota-derived metabolites in irritable bowel syndrome[J]. Front Cell Infect Microbiol, 2021,11: 729346.
[31]
Ishioh M, Nozu T, Miyagishi S, et al. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats[J]. Biochem Pharmacol, 2022,206: 115331.
[36]
Jiang W, Wu J, Zhu S, et al. The role of short chain fatty acids in irritable bowel syndrome[J]. J Neurogastroenterol Motil, 2022,28(4): 540-548.
[32]
Ford A C, Sperber A D, Corsetti M, et al. Irritable bowel syndrome[J]. Lancet, 2020,396(10263): 1675-1688.
[37]
Salvo-Romero E, Rodiño-Janeiro B K, Albert-Bayo M, et al. Eosinophils in the gastrointestinal tract: key contributors to neuro-immune crosstalk and potential implications in disorders of brain-gut interaction[J]. Cells, 2022,11(10):1644.
[33]
Rengarajan S, Knoop K A, Rengarajan A, et al. A potential role for stress-induced microbial alterations in iga-associated irritable bowel syndrome with diarrhea[J]. Cell Rep Med, 2020,1(7):100124.
[38]
Wu H, Zhan K, Rao K, et al. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis[J]. Biomed Pharmacother, 2022,149: 112811.
[34]
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome[J]. Dig Dis Sci, 2020,65(3): 829-839.
[39]
Wu L, Gao L, Jin X, et al. Ethanol Extract of mao jian green tea attenuates gastrointestinal symptoms in a rat model of irritable bowel syndrome with constipation via the 5-hydroxytryptamine signaling pathway[J]. Foods, 2023,12(5):1101.
[35]
Xiao L, Liu Q, Luo M, et al. Gut microbiota-derived metabolites in irritable bowel syndrome[J]. Front Cell Infect Microbiol, 2021,11: 729346.
[40]
Aksel G, Çorbacıoglu S K, Özen C. High-altitude illness: management approach[J]. Turk J Emerg Med, 2019,19(4): 121-126.
[36]
Jiang W, Wu J, Zhu S, et al. The role of short chain fatty acids in irritable bowel syndrome[J]. J Neurogastroenterol Motil, 2022,28(4): 540-548.
[41]
Sperber A D, Bangdiwala S I, Drossman D A, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study[J]. Gastroenterology, 2021,160(1):99-114.
[37]
Salvo-Romero E, Rodiño-Janeiro B K, Albert-Bayo M, et al. Eosinophils in the gastrointestinal tract: key contributors to neuro-immune crosstalk and potential implications in disorders of brain-gut interaction[J]. Cells, 2022,11(10):1644.
Wu H, Zhan K, Rao K, et al. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis[J]. Biomed Pharmacother, 2022,149: 112811.
Wu L, Gao L, Jin X, et al. Ethanol Extract of mao jian green tea attenuates gastrointestinal symptoms in a rat model of irritable bowel syndrome with constipation via the 5-hydroxytryptamine signaling pathway[J]. Foods, 2023,12(5):1101.
[44]
Zhang X G, Xu W, Zhong W C, et al. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau[J]. J Zhejiang Univ Sci B, 2023: 1-16.
[40]
Aksel G, Çorbacıoglu S K, Özen C. High-altitude illness: management approach[J]. Turk J Emerg Med, 2019,19(4): 121-126.
[41]
Sperber A D, Bangdiwala S I, Drossman D A, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study[J]. Gastroenterology, 2021,160(1):99-114.
Zhang X G, Xu W, Zhong W C, et al. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau[J]. J Zhejiang Univ Sci B, 2023: 1-16.