[4] |
Sgouroudis E, Piccirillo C A. Control of type 1 diabetes by CD4+Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease[J]. Diabetes Metab Res Rev,2009,25(3):208-218.
|
[1] |
Ryba-Stanislawowska M, Skrzypknowska M, Mysliwiec M, et al. Loss of the balance between CD4+Foxp3+ regulatory T cells and CD4+IL17+ Th17 cells in patients with type 1 diabetes[J]. Hum Immunol,2013,74(6):701-707.
|
[5] |
Ferreira C, Palmer D, Blake K, et al. Reduced regulatory T cell diversity in NOD mice is linked to early events in the thymus[J]. J Immunol, 2014, 24:Epud ahead of print.
|
[2] |
Dasgupta A, Saxena R. Regulatory T cells: a review[J]. Natl Med J India, 2012,25:341-351.
|
[6] |
Lindley S, Dayan C M, Bishop A, et al. Defective suppressor function in CD4+CD25+ T cells from patients with type 1 diabetes[J]. Diabetes,2005,54(1):922-929.
|
[3] |
Kaser T, Mullebner A, Harti R T, et al. Porcine T-helper and regulatory T cells exhibit versatile mRNA expression capabilities for cytokines and co-stimulatory molecules[J]. Cytokines,2012,60(2):400-409.
|
[4] |
Sgouroudis E, Piccirillo C A. Control of type 1 diabetes by CD4+Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease[J]. Diabetes Metab Res Rev,2009,25(3):208-218.
|
[7] |
Marek-Trzonkowska N, Mysliwiec M, Siebert J, et al. Clinical application of regulatory T cells in type 1 diabetes[J]. Pediatr Diabetes, 2013,14(5):322-332.
|
[8] |
Luo X, Tarbell K V, Yang H, et al. Dentritic cells with TGF-beta differentiate negative CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells[J]. Proc Natl Acad Sci USA,2007,104(8):2821-2826.
|
[5] |
Ferreira C, Palmer D, Blake K, et al. Reduced regulatory T cell diversity in NOD mice is linked to early events in the thymus[J]. J Immunol, 2014, 24:Epud ahead of print.
|
[9] |
Petrichde L G, Fu J, Connor K J, et al. IFN-gamma and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first degree relatives of patients with type 1 diabetes[J]. Diabetologia,2010,53(7):1451-1460.
|
[10] |
Shounan Y, Ming J, Jingjing W,et al. Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice[J]. Diabetes,2012,61(5):1180-1191.
|
[6] |
Lindley S, Dayan C M, Bishop A, et al. Defective suppressor function in CD4+CD25+ T cells from patients with type 1 diabetes[J]. Diabetes,2005,54(1):922-929.
|
[11] |
Tai N, Yasuda H, Xiang Y, et al. IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice[J]. Clin Immunol,2011,139(3):336-349.
|
[7] |
Marek-Trzonkowska N, Mysliwiec M, Siebert J, et al. Clinical application of regulatory T cells in type 1 diabetes[J]. Pediatr Diabetes, 2013,14(5):322-332.
|
[12] |
Richer M J, Straka N, Fang D, et al. Regulatory T-cells protect from type 1 diabetes after induction by coxsackievirus infecton in the context of transforming growth factor-beta[J]. Diabetes,2008,57(5):1302-1311.
|
[13] |
Olivieri A, Deangelis S, Dionisi S, et al. Serum transforming growth factor beta1 during diabetes development in non-obese diabetic mice and humans[J]. Clin Exp Immunol,2010,162(3):407-414.
|
[8] |
Luo X, Tarbell K V, Yang H, et al. Dentritic cells with TGF-beta differentiate negative CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells[J]. Proc Natl Acad Sci USA,2007,104(8):2821-2826.
|
[14] |
Tian L, Gao J, Hao J, et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by adipeptidyl peptidase IV inhibitor[J]. Endocrinology,2010,151(7):3049-3060.
|
[9] |
Petrichde L G, Fu J, Connor K J, et al. IFN-gamma and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first degree relatives of patients with type 1 diabetes[J]. Diabetologia,2010,53(7):1451-1460.
|
[15] |
Hu C, Ding H,Zhang X,et al. Combination treatment with anti-CD20 and oral anti-CD3 prevents and reverses autoimmune diabetes[J]. Diabetes,2013,62(8):2849-2858.
|
[10] |
Shounan Y, Ming J, Jingjing W,et al. Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice[J]. Diabetes,2012,61(5):1180-1191.
|
[16] |
Herold K C, Gitelman S E, Ehlers M R,et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders[J].Diabetes,2013,62(11):3766-3774.
|
[11] |
Tai N, Yasuda H, Xiang Y, et al. IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice[J]. Clin Immunol,2011,139(3):336-349.
|
[17] |
Herold K C, Gitelman S, Greenbaum C, et al. Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years[J]. Clin Immunol,2009,132(2):166-173.
|
[12] |
Richer M J, Straka N, Fang D, et al. Regulatory T-cells protect from type 1 diabetes after induction by coxsackievirus infecton in the context of transforming growth factor-beta[J]. Diabetes,2008,57(5):1302-1311.
|
[18] |
Downes K, Marcovecchio M L, Clarke P,et al. Pasma concentrations of souble IL-2 receptor α(CD25)are increased in type 1 diabetes and associated with reduced C-peptide levels in young patients[J]. Diabetologia,2014,57(2):366-372.
|
[13] |
Olivieri A, Deangelis S, Dionisi S, et al. Serum transforming growth factor beta1 during diabetes development in non-obese diabetic mice and humans[J]. Clin Exp Immunol,2010,162(3):407-414.
|
[19] |
Long S A, Cerosaletti K. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects[J]. Diabetes,2010,59(2):407-415.
|
[14] |
Tian L, Gao J, Hao J, et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by adipeptidyl peptidase IV inhibitor[J]. Endocrinology,2010,151(7):3049-3060.
|
[20] |
Johnson M C, Garland A L, Nicolson S C,et al. β-cell specific IL-2 therapy increases islet Foxp3+ Treg and suppresses type 1 diabetes in NOD mice[J]. Diabetes,2013, 62(11):3775-3784.
|
[15] |
Hu C, Ding H,Zhang X,et al. Combination treatment with anti-CD20 and oral anti-CD3 prevents and reverses autoimmune diabetes[J]. Diabetes,2013,62(8):2849-2858.
|
[21] |
Hartemann A, Bensimon G, Payan C A,et al. Low-dose interleukin 2 in patients with type 1 diabetes:a phase 1/2 randomised,double-blind,placebo-controlled trial[J]. Lancet Diabetes Endocrinol, 2013,1(4):295-305.
|
[16] |
Herold K C, Gitelman S E, Ehlers M R,et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders[J].Diabetes,2013,62(11):3766-3774.
|
[22] |
Perl S, Perlman J, Weitzel R P,et al. Addition of rapamycin to anti-CD3 antibody improves long-term glycemia control in diabetic NOD mice[J].PLoS One,2013,8(6):e67189.
|
[17] |
Herold K C, Gitelman S, Greenbaum C, et al. Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years[J]. Clin Immunol,2009,132(2):166-173.
|
[18] |
Downes K, Marcovecchio M L, Clarke P,et al. Pasma concentrations of souble IL-2 receptor α(CD25)are increased in type 1 diabetes and associated with reduced C-peptide levels in young patients[J]. Diabetologia,2014,57(2):366-372.
|
[23] |
Long S A, Rieck M, Sanda S,et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments tregs yet transiently impairs β-cell function[J]. Diabetes,2012,61(9):2340-2348.
|
[24] |
Hjorth M, Axelsson S, Ryden A, et al. GAD-alum treatment induces GAD65-specific CD4+CD25 high FOXP3+ cells in type 1 diabetic patients[J]. Clin Immunol,2011,138(1):117-126.
|
[19] |
Long S A, Cerosaletti K. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects[J]. Diabetes,2010,59(2):407-415.
|
[20] |
Johnson M C, Garland A L, Nicolson S C,et al. β-cell specific IL-2 therapy increases islet Foxp3+ Treg and suppresses type 1 diabetes in NOD mice[J]. Diabetes,2013, 62(11):3775-3784.
|
[25] |
Ludvigsson J, Hjorth M, Cheramy M, et al. Extened evaluation of the safty and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes:a randomized controlled trial[J]. Diabetologia,2011,54(3):634-640.
|
[21] |
Hartemann A, Bensimon G, Payan C A,et al. Low-dose interleukin 2 in patients with type 1 diabetes:a phase 1/2 randomised,double-blind,placebo-controlled trial[J]. Lancet Diabetes Endocrinol, 2013,1(4):295-305.
|
[26] |
Ludvigsson J, Krisky D, Casas R,et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus[J]. N Eng J Med,2012,366(5):433-342.
|
[27] |
Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Therapy of type 1 diabetes with CD4+CD25highCD127-regulatory T cells prolongs survival of pancreatic islets- Results of one year follow-up[J]. Clin Immunol,2014,153(1):23-30.
|
[22] |
Perl S, Perlman J, Weitzel R P,et al. Addition of rapamycin to anti-CD3 antibody improves long-term glycemia control in diabetic NOD mice[J].PLoS One,2013,8(6):e67189.
|
[23] |
Long S A, Rieck M, Sanda S,et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments tregs yet transiently impairs β-cell function[J]. Diabetes,2012,61(9):2340-2348.
|
[24] |
Hjorth M, Axelsson S, Ryden A, et al. GAD-alum treatment induces GAD65-specific CD4+CD25 high FOXP3+ cells in type 1 diabetic patients[J]. Clin Immunol,2011,138(1):117-126.
|
[25] |
Ludvigsson J, Hjorth M, Cheramy M, et al. Extened evaluation of the safty and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes:a randomized controlled trial[J]. Diabetologia,2011,54(3):634-640.
|
[26] |
Ludvigsson J, Krisky D, Casas R,et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus[J]. N Eng J Med,2012,366(5):433-342.
|
[27] |
Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Therapy of type 1 diabetes with CD4+CD25highCD127-regulatory T cells prolongs survival of pancreatic islets- Results of one year follow-up[J]. Clin Immunol,2014,153(1):23-30.
|
[1] |
. [J]. Med. J. Chin. Peop. Armed Poli. Forc., 2017, 28(1): 83-85. |
|
|
|