|
|
Received: 02 November 2019
|
|
|
|
|
[1] |
Parsons B, Strauss E. Surgical management of chronic osteomyelitis[J]. Am J Surg, 2004, 188(1A Suppl):57-66.
|
[2] |
Wernike E, Montjovent M O, Liu Y , et al. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo[J]. Eur Cell Mater, 2010, 19(1):30-40.
|
[3] |
Mueller T L, Wirth A J, van Lenthe G H, et al. Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: a non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis[J]. J Tissue Eng Regen Med, 2011, 5(5): 415-420.
|
[4] |
Anindita C, Gert M, van Blitterswijk C, et al. Clinical application of human mesenchymal stromal cells for bone tissue engineering [J].Stem Cells Int, 2010, 2010: 215625.
|
[5] |
Emeka N, Neukam Friedrich W. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival[J] .Eur J Oral Implantol, 2014, null: S203-217.
|
[6] |
冷 一, 李祖浩, 任广凯,等. 生物活性支架在骨组织工程中的应用及进展[J]. 中国组织工程研究, 2019, 23(6):149-156.
|
[7] |
Krishna B V, Subhadip B, Susmita, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties [J]. Acta Biomater, 2010, 6: 3349-3359.
|
[8] |
Skoog S A, Kumar G, Goering P L, et al. Biological response of human bone marrow-derived mesenchymal stem cells to commercial tantalum coatings with microscale and nanoscale surface topographies[J]. JOM, 2016, 68(6):1672-1678.
|
[9] |
Mrosek E H, Chung H-W, Fitzsimmons J S, et al. Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model [J] .Bone Joint Res, 2016, 5: 403-411.
|
[10] |
Brant N O, Abdel M P, Hanssen A D, et al. Porous tantalum femoral metaphyseal cones for large femoral bone defects in revision total knee arthroplasty[J]. JBJS Essent Surg Tech, 2017, 7: e17.
|
[11] |
Anne-Marie P, Sara C, Hajar R, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep[J] .Sci Transl Med, 2018, 10: undefined.
|
[12] |
Shen Xinkun, Zhang Yangyang, Ma Pingping, et al. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration [J]. Biomaterials, 2019, 212: 1-16.
|
[13] |
Bruno Z, Uggowitzer Peter J, Löffler Jörg F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants [J] .Nat Mater, 2009, 8: 887-891.
|
[14] |
Julia K, Ivonne B, Elmar W, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants[J] .Acta Biomater, 2013, 9: 8714-8721.
|
[15] |
Zhang Nan, Zhao Dewei, Liu Na, et al. Assessment of the degradation rates and effectiveness of different coated Mg-Zn-Ca alloy scaffolds for in vivo repair of critical-size bone defects[J].J Mater Sci Mater Med, 2018, 29: 138.
|
[16] |
Zhang Yifeng, Xu Jiankun, Ruan Yechun, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J].Nat. Med, 2016, 22: 1160-1169.
|
[17] |
Hanna I, Viivi T, Finnil Mikko A J, et al. Long-term voluntary exercise of male mice induces more beneficial effects on cancellous and cortical bone than on the collagenous matrix[J].Exp Gerontol, 2009, 44: 708-717.
|
[18] |
Zhang Kun, Zhou Yong, Xiao Cong, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect.[J] .Sci Adv, 2019, 5: eaax6946.
|
[19] |
dos Santos L A, Carrodéguas R G, Rogero S O, et al. Alpha-tricalcium phosphate cement: "in vitro" cytotoxicity[J]. Biomaterials, 2002, 23: 2035-2042.
|
[20] |
Lai Yuxiao, Li Ye, Cao Huijuan et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.[J]. Biomaterials, 2019, 197: 207-219.
|
[21] |
Valentina M P, Larry L H, Aldo R B. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues.[J] .Acta Biomater, 2015, 13: 1-15.
|
[22] |
Lin D, Chai Y, Ma Y, et al. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold [J]. Biomaterials, 2017: S0142961217307378.
|
[23] |
Ryan E J , Ryan A J , González-Vázquez A, et al. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo[J]. Biomaterials, 2019.
|
[24] |
Peter N, Andrew M, Rutledge E B, et al. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. [J] .Nanomedicine, 2013, 9: 1139-58.
|
[25] |
Li Xiaoming, Zhao Tianxiao, Sun Lianwen, et al. The applications of conductive nanomaterials in the biomedical field[J]. J Biomed Mater Res A, 2016, 104: 322-339.
|
[26] |
Wang Cunyang, Yu Bo, Fan Yubo, et al. Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109823.
|
[27] |
Huang Boyang, Vyas C, Roberts I, et al. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 266-278.
|
[28] |
陆史俊, 左保齐, 刘洪臣. 丝素蛋白生物支架材料在骨组织工程中的应用进展[J]. 中国修复重建外科杂志, 2014(10): 1307-1310.
|
[29] |
牛涵波. 丝素蛋白/壳聚糖三维多孔支架的构建及体外细胞学初步研究[D].苏州:苏州大学,2018.
|
[30] |
Yang S Y, Hwang T H, Che L h, et al. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering [J]. Biomed Mater, 2015, 10: 035011.
|
[31] |
Ignatius A A, Betz O, Augat P, et al. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes[J].J Biomed Mater Res, 2001, 58: 701-709.
|
[32] |
Song J E, Tripathy N, Shin J H, et al. In vivo bone regeneration evaluation of duck’s feet collagen/PLGA scaffolds in rat calvarial defect [J]. Macromol Res, 2017, 25(10):1-6.
|
[33] |
Jahan K, Tabrizian M. Composite biopolymers for bone regeneration enhancement in bony defects [J]. Biomater Sci, 2015, 4(1): 25-39.
|
[34] |
Sophie F, Francoise N, Catherine L V, et al. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats[J]. J Mater Sci Mater Med, 2017, 28: 35.
|
[35] |
陈明姣, 范先群. 透明质酸-明胶双网络水凝胶促进骨髓间充质干细胞成骨分化的作用[J]. 上海交通大学学报(医学版), 2018, 38, 296(7):14-23.
|
[36] |
李冬梅, 刘新晖, 李庆星. 纳米级细胞型组织工程人工骨的构建:修复下颌骨缺损[J]. 中国组织工程研究, 2018, 22, 835(14): 20-25.
|
[37] |
姚芳莲, 周钰航, 张 瑞, 等. 壳聚糖/羟基磷灰石复合纳米材料的研究[J]. 天津大学学报(自然科学与工程技术版), 2017(5): 24-28.
|
[38] |
Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnol Adv, 2016, 34: 740-753.
|
[1] |
. [J]. Med. J. Chin. Peop. Armed Poli. Forc., 2018, 29(2): 197-200. |
|
|
|