|
|
The poterrtial mechanism of Congrong Yishen granules in the treatment of diabetic mephropathy |
CAI Wenxi, LI Hao, SHI Lei, ZHANG Lei |
Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin 300162, China |
|
|
Abstract Objective To explore the non-single network correlations between multiple components,targets, and pathways of Congrong Yishen granules(CYGs) in the treatment of diabetic nephropathy (DN) via network pharmacology in order to predict the potential mechanism of action.Methods TCMSP and other online databases were searched for the active components of CYGs and the relevant targets on DN before they were screened. The screened targets were submitted to STRING and Cytoscape tools for network visualization. KEGG enrichment analysis of the core targets was performed with ClueGO plugin to predict the potential mechanism of CYGs against DN.Results A total of 69 active components and 37 core targets against DN were screened from CYGs. After enrichment analysis, 94 significantly related signaling pathways were identified, including the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, fluid shear stress and atherosclerosis, involving 352 significantly related biological processes including response to lipopolysaccharide, response to reactive oxygen species, and cell proliferation.Conclusions CongRong YiShen granules may contribute to the treatment of DN by intervening in the AGE-RAGE signaling pathway and TNF signaling pathway in the human body through AKT1, IL-6, TNF, VEGFA and other key targets before participating in such biological processes as inflammatory response, response to reactive oxygen species and oxidative stress.
|
Received: 13 April 2020
|
|
|
|
|
[1] |
Piccoli G B, Grassi G, Cabiddu G, et al. Diabetic kidney disease: a syndrome rather than a single disease[J]. Rev Diabet Stud, 2015, 12(1-2):87-109.
|
[2] |
陈 锐, 聂海洋, 陈锦英, 等. 糖尿病肾病机制的中西医研究进展[J]. 中国老年学杂志, 2014,34(22):6515-6517.
|
[3] |
裴剑浩. 中国糖尿病诊疗指南解读一糖尿病肾病[J]. 中国医师杂志, 2014, 16(2):161-163.
|
[4] |
Rossing P, Persson F, Frimodt-Møller M. Prognosis and treatment of diabetic nephropathy: Recent advances and perspectives[J]. Nephrol Ther, 2018, 14:S31-S37.
|
[5] |
Dounousi E, Duni A, Leivaditis K, et al. Improvements in the management of diabetic nephropathy[J]. Rev Diabet Stud, 2015, 12(1-2):119-133.
|
[6] |
王 俊, 赵 玮, 孔 伟. 苁蓉益肾颗粒辅助治疗早期糖尿病肾病患者的效果及对血清炎症因子的影响[J]. 中药材, 2017, 40(1): 223-225.
|
[7] |
朱迎春, 吴莲叶, 王 青, 等. 苁蓉益肾颗粒联合缬沙坦对慢性肾脏病患者肾功能及蛋白尿的影响[J]. 现代中西医结合杂志, 2016, 25(25):2744-2746.
|
[8] |
齐慧娟, 冯继明, 索林格, 等. 苁蓉益肾颗粒治疗早期糖尿病肾病的临床疗效观察[J]. 湖北中医杂志, 2017, 10(10):5-7.
|
[9] |
Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6(1):13-19.
|
[10] |
Hong L Y, Yan Y C, Xu L X, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics[J]. Nucleic Acids Res, 2018, 46:1121-1127.
|
[11] |
Ada H, Scott A F, Amberger J S, et al. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders[J]. Nucleic Acids Res, 2005, 33: 514-517.
|
[12] |
Piñero, J, Bravo, À, Queralt-Rosinach, N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants[J]. Nucleic Acids Res, 2017, 45(1), 833-839.
|
[13] |
Wishart D S, Feunang Y D, Guo A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(1), 1074-1082.
|
[14] |
Carrillo M W, Mcdonagh E M , Hebert J M , et al. Pharmacogenomics Knowledge for Personalized Medicine[J]. Clin Pharmacol Ther, 2012, 92(4): 414-417.
|
[15] |
Allan, Peter, Davis, et al. The comparative toxicogenomics database: update 2019[J]. Nucleic Acids Res, 2018, 47(D1):948-954.
|
[16] |
Stelzer G, Rosen N, Plaschkes I, et al. The geneCards suite: from gene data mining to disease genome sequence analyses[M]. Curr Protoc Bioinformatics, 2016, 54:1.30.1 - 1.30.33.
|
[17] |
Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.
|
[18] |
Michael K, Christian V M, Monica C, et al. STITCH: interaction networks of chemicals and proteins[J]. Nucleic Acids Res, 2008, 36:684-688.
|
[19] |
Gabriela B, Bernhard M, Hubert H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks[J]. Bioinformatics, 2009, 25(8):1091-1093.
|
[20] |
闫 凯. 王暴魁.“清热凉血”法治疗糖尿病肾病用药规律分析以及经验总结[D]. 2016.
|
[21] |
李道中, 彭代银, 徐先祥, 等. 菟丝子多糖降糖作用机制研究[J]. 中华中医药学刊, 2008(12):190-191.
|
[22] |
Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21(2):212-222.
|
[23] |
吴琼皎. 2型糖尿病肾病患者血清VEGF、IL-6及TNF-α水平的检测与意义[J]. 中国医药科学, 2014,4(20):136-138.
|
[24] |
Xu X, Lin S, Chen Y, et al. The Effect of Metformin on the Expression of GPR109A, NF-κB and IL-1β in Peripheral Blood Leukocytes from Patients with Type 2 Diabetes Mellitus[J]. Ann Clin Lab Sci, 2017, 47(5):556-562.
|
[25] |
Duran-Salgado, Montserrat B. Diabetic nephropathy and inflammation[J]. World J Diabetes, 2014, 5(3):393-398.
|
[26] |
吴洪波,高 俭,闫秋艳, 等. 弥可保序贯治疗糖尿病神经病变的临床观察[J]. 河北医药,2010,32(18):2551-2552.
|
[27] |
Winkler, Gábor, Kempler, Péter. Pathomechanism of diabetic neuropathy: background of the pathogenesis-oriented therapy[J]. Orv Hetil, 2010, 151(24):971-981.
|
[28] |
宋昱佳. 2型糖尿病肾病患者血清IL-17A、IL-17F水平变化及临床意义[D].
|
[29] |
Kashihara N, Haruna Y, K. Kondeti V, et al. Oxidative stress in diabetic nephropathy[J]. Curr Med Chem, 2010, 17(34):4256-4269.
|
[30] |
Forbes J M, Coughlan M T, Cooper M E. Oxidative stress as a major culprit in kidney disease in diabetes[J]. Diabetes, 2008, 57(6):1446-1454.
|
[31] |
胡 雷. 针挑配合苁蓉益肾颗粒治疗功能性逆行射精症临床观察及机制探讨[A]. 中华中医药学会.中华中医药学会第十四次男科学术大会论文集[C].中华中医药学会:2014:5.
|
[1] |
. [J]. Med. J. Chin. Peop. Armed Poli. Forc., 2020, 31(9): 819-822. |
|
|
|
|