[1] |
Doria A, Mosca M, Gambari P F, et al. Defining unclassifiable connective tissue diseases: incomplete, undifferentiated, or both? [J]. J Rheumatol, 2005, 32(2): 213-215.
|
[2] |
Lai Z W, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial[J]. Lancet, 2018, 391(10126): 1186-1196.
|
[3] |
Wu C Y, Wang Q, Xu D, et al. Sirolimus for patients with connective tissue disease-related refractory thrombocytopenia: a single-arm, open-label clinical trial[J]. Rheumatology (Oxford), 2021, 60(6): 2629-2634.
|
[4] |
Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients[J]. Cancer Treat Rev, 2017, 59(9): 93-101.
|
[5] |
Delgoffe G M, Pollizzi K N, Waickman A T, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2[J]. Nat Immunol, 2011, 12(4): 295-303.
|
[6] |
Jung S, Gámez-Díaz L, Proietti M, et al. “Immune TOR-opathies” a novel disease entity in clinical immunology[J]. Front Immunol, 2018, 9:966.
|
[7] |
Aringer M, Schneider M. Systemic lupus erythematosus[J]. Dtsch Med Wochenschr, 2016, 141(8): 537-543.
|
[8] |
Kato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus[J]. J Immunol, 2014, 192(9): 4134-4144.
|
[9] |
Kato H, Perl A. Blockade of treg cell differentiation and function by the interleukin-21-mechanistic target of rapamycin axis via suppression of autophagy in patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2018, 70(3): 427-438.
|
[10] |
Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases[J]. Curr Opin Rheumatol, 2020, 32(2): 184-191
|
[11] |
Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production[J]. Immunity, 2014, 41(3): 375-388.
|
[12] |
Zhou X J, Klionsky D J, Zhang H. Podocytes and autophagy: a potential therapeutic target in lupus nephritis[J]. Autophagy, 2019, 15(5): 908-912.
|
[13] |
Fernandez D R, Crow M K. CD8 T cells and mTOR: new concepts and targets for systemic lupus erythematosus[J]. Lancet, 2018, 391(10126): 1126-1127.
|
[14] |
Doherty E, Oaks Z, Perl A. Increased mitochondrial electron transport chain activity at complex I is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus[J]. Antioxid Redox Signal, 2014, 21(1): 56-65.
|
[15] |
Wang X J, Yang P T, Qin L. Rapamycin prevents the impairments of social recognition induced by anti-P antibody in a murine model[J]. Ann Rheum Dis, 2020, 79(3): 428-429.
|
[16] |
Eriksson P, Wallin P, SjÖwall C. Clinical experience of sirolimus regarding efficacy and safety in systemic lupus erythematosus[J]. Front Pharmacol, 2019, 10:82.
|
[17] |
Yap D Y H, Tang C, Chan G C W, et al. Longterm data on sirolimus treatment in patients with lupus nephritis[J]. J Rheumatol, 2018, 45(12): 1663-1670.
|
[18] |
Peng L Y, Wu C Y, Hong R P, et al. Clinical efficacy and safety of sirolimus in systemic lupus erythematosus: a real-world study and meta-analysis[J]. Ther Adv Musculoskelet Dis, 2020, 12(9):1759720X20953336.
|
[19] |
Jiao Z, Wang W, Jia R, et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis[J]. Scand J Rheumatol, 2007,36(6):428-433.
|
[20] |
Perl A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J]. Nat Rev Rheumatol, 2016, 12(3): 169-182.
|
[21] |
Wen H Y, Wang J, Zhang S X, et al. Low-dose sirolimus immunoregulation therapy in patients with active rheumatoid arthritis: a 24-week follow-up of the randomized, open-label, parallel-controlled trial[J]. J Immunol Res, 2019, 2019: 7684352.
|
[22] |
Niu H Q, Li Z H, Zhao W P, et al. Sirolimus selectively increases circulating treg cell numbers and restores the Th17/Treg balance in rheumatoid arthritis patients with low disease activity or in DAS28 remission who previously received conventional disease-modifying anti-rheumatic drugs[J]. Clin Exp Rheumatol, 2020, 38(1): 58-66.
|
[23] |
Shao P, Ma L X, Ren Y L, et al. Modulation of the immune response in rheumatoid arthritis with strategically released rapamycin[J]. Mol Med Rep, 2017, 16(4): 5257-5262.
|
[24] |
Zhou R P, Zhu F, Wu X S, et al. Effects of autophagy on apoptosis of articular chondrocytes in adjuvant arthritis rats[J]. J Cell Mol Med, 2019, 23(11): 7879-7884.
|
[25] |
Bassin E J, Buckley A R, Piganelli J D, et al. TRI microparticles prevent inflammatory arthritis in a collagen-induced arthritis model[J]. PLoS One, 2020,15(9): e0239396.
|
[26] |
Kassan S S, Moutsopoulos H M. Clinical manifestations and early diagnosis of SjÖgren syndrome[J]. Arch Intern Med, 2004, 164(12): 1275-1284.
|
[27] |
Shah M, Edman M C, Janga S R, et al. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of SjÖgren's syndrome[J]. J Control Release, 2013,171(3):269-279.
|
[28] |
Blokland S L M, Hillen M R, Wichers C G K, et al. Increased mTORC1 activation in salivary gland B cells and T cells from patients with SjÖgren's syndrome: mTOR inhibition as a novel therapeutic strategy to halt immunopathology?[J]. RMD Open, 2019, 5(1): e000701.
|
[29] |
Jennette J C, Falk R J, Bacon P A, et al. 2012 revised international chapel hill consensus conference nomenclature of vasculitides[J]. Arthritis Rheum, 2013, 65(1): 1-11.
|
[30] |
Hadjadj J, Canaud G, Mirault T, et al. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G[J]. Rheumatology (Oxford), 2018, 57(6): 1011-1020.
|
[31] |
Maciejewski-Duval A, Comarmond C, Leroyer A, et al. mTOR pathway activation in large vessel vasculitis[J]. J Autoimmun, 2018, 94:99-109.
|
[32] |
Fallarino F, Grohmann U, Hwang K W, et al. Modulation of tryptophan catabolism by regulatory T cells[J]. Nat Immunol, 2003, 4(12): 1206-1212.
|
[33] |
Jasinski S, Weinblatt M E, Glasser C L. Sirolimus as an effective agent in the treatment of immune thrombocytopenia (ITP) and evans syndrome (ES): a single institution's experience[J]. J Pediatr Hematol Oncol, 2017, 39(6): 420-424.
|
[34] |
Li H, Ji J, Du Y, et al. Sirolimus is effective for primary relapsed/refractory autoimmune cytopenia: a multicenter study[J]. Exp Hematol, 2020, 89(9): 87-95.
|
[35] |
Li J, Wang Z, Dai L, et al. Effects of rapamycin combined with low dose prednisone in patients with chronic immune thrombocytopenia[J]. Clin Dev Immunol, 2013, 2013:548085.
|
[36] |
Mousavi-Hasanzadeh M, Bagheri B, Mehrabi S, et al. Sirolimus versus cyclosporine for the treatment of pediatric chronic immune thrombocytopenia: a randomized blinded trial[J]. Int Immunopharmacol, 2020, 88(11): 106895.
|
[37] |
Feng Y, Xiao Y, Yan H, et al. Sirolimus as rescue therapy for refractory/relapsed immune thrombocytopenia: results of a single-center, prospective, single-arm study[J]. Front Med (Lausanne), 2020, 7:110.
|
[38] |
You T, Wang Q, Zhu L. Role of autophagy in megakaryocyte differentiation and platelet formation[J]. Int J Physiol Pathophysiol Pharmacol, 2016, 8(1): 28-34.
|
[39] |
Shan N N, Dong L L, Zhang X M, et al. Targeting autophagy as a potential therapeutic approach for immune thrombocytopenia therapy[J]. Crit Rev Oncol Hematol, 2016, 100(4):11-15.
|
|
|