|
|
Received: 10 February 2022
|
|
|
|
|
[1] |
Paul S, Candelario J E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies[J]. Exp Neurol, 2021, 335: 113518.
|
[2] |
Hasain Z, Mokhtar N M, Kamaruddin N A, et al. Gut microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential[J]. Front Cell Infect Microbiol, 2020, 22(10): 188.
|
[3] |
Cryan J F, O′riordan K J, Cowan C S M, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
|
[4] |
Gentile C L, Weir T L. The gut microbiota at the intersection of diet and human health[J]. Science, 2018, 362(6416): 776-780.
|
[5] |
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695): 210-215.
|
[6] |
Tang Q, Cao L. Intestinal flora and neurological disorders[J]. Sheng Wu Gong Cheng Xue Bao, 2021, 37(11): 3757-3780.
|
[7] |
Li C, Pi G, Li F. The role of intestinal flora in the regulation of bone homeostasis[J]. Front Cell Infect Microbiol, 2021, 11: 579323.
|
[8] |
Zeng X, Gao X, Peng Y, et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut[J]. Front Cell Infect Microbiol, 2019, 15(9): 4.
|
[9] |
Yamashiro K, Tanaka R, Urabe T, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke[J]. PLoS One, 2017, 12(2): e0171521.
|
[10] |
Din A U, Hassan A, Zhu Y, et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol, 2019, 103(23-24): 9217-9228.
|
[11] |
Yan X, Jin J, Su X, et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension[J]. Circ Res, 2020, 126(7): 839-853.
|
[12] |
Wu C, Li C, Zhao W, et al. Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting[J]. Neurology, 2018, 90(15): e1283-e1290.
|
[13] |
Haghikia A, Li X S, Liman T G, et al. Gut microbiota-dependent trimethylamine n-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2225-2235.
|
[14] |
Nam H S. Gut microbiota and ischemic stroke: the role of trimethylamine N-oxide[J]. J Stroke, 2019, 21(2): 151-159.
|
[15] |
Stanley D, Moore R J, Wong C H Y. An insight into intestinal mucosal microbiota disruption after stroke[J]. Sci Rep, 2018, 8(1): 568.
|
[16] |
Chen Y, Liang J, Ouyang F, et al. Persistence of gut microbiota dysbiosis and chronic systemic inflammation after cerebral infarction in cynomolgus monkeys[J]. Front Neurol, 2019, 16(10): 661.
|
[17] |
Wen S W, Wong C H Y. An unexplored brain-gut microbiota axis in stroke[J]. Gut Microbes, 2017, 8(6): 601-606.
|
[18] |
Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients[J]. BMC Microbiol, 2019, 19(1): 191.
|
[19] |
Tan B Y Q, Paliwal P R, Sharma V K. Gut microbiota and stroke[J]. Ann Indian Acad Neurol, 2020, 23(2): 155-158.
|
[20] |
Houlden A, Goldrick M, Brough D, et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production[J]. Brain Behav Immun, 2016, 57(5): 10-20.
|
[21] |
Zhang Z, Zhang Y, Li J, et al. The neuroprotective effect of tea polyphenols on the regulation of intestinal flora[J]. Molecules, 2021, 26(12):135-141.
|
[22] |
Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523.
|
[23] |
Singh V, Sadler R, Heindl S, et al. The gut microbiome primes a cerebroprotective immune response after stroke[J]. J Cereb Blood Flow Metab, 2018, 38(8): 1293-1298.
|
[24] |
Klimiec E, Pasinska P, Kowalska K, et al. The association between plasma endotoxin, endotoxin pathway proteins and outcome after ischemic stroke[J]. Atherosclerosis, 2018, 269: 138-143.
|
[25] |
Liu Y, Kong C, Gong L, et al. The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites[J]. J Alzheimers Dis, 2020, 73(4): 1455-1466.
|
[26] |
Xu J, Cheng A, Song B, et al. Trimethylamine n-oxide and stroke recurrence depends on ischemic stroke subtypes[J]. Stroke, 2022,53(4): 1207-1215.
|
[27] |
Kim S K, Guevarra R B, Kim Y T, et al. Role of probiotics in human gut microbiome-associated diseases[J]. J Microbiol Biotechnol, 2019, 29(9): 1335-1340.
|
[28] |
Chen R, Xu Y, Wu P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res, 2019, 148: 104403.
|
[29] |
Huang J T, Mao Y Q, Han B, et al. Calorie restriction conferred improvement effect on long-term rehabilitation of ischemic stroke via gut microbiota[J]. Pharmacol Res, 2021, 170(12): 105726.
|
[30] |
赵晓鹏,杜红珍,谢 颖,等.益生菌制剂对脑卒中患者肠道菌群及肠道功能影响的Meta分析[J].中国微生态学杂志,2021,33(10):1139-1146.
|
[31] |
Lee J, D′aigle J, Atadja L, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice[J]. Circ Res, 2020, 127(4): 453-465.
|
[32] |
Singh V, Roth S, Llovera G, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke[J]. J Neurosci, 2016, 36(28): 7428-40.
|
[33] |
Roberts A B, Gu X, Buffa J A, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential[J]. Nat Med, 2018, 24(9): 1407-1417.
|
|
|