[1] |
Ludwig N, Rao A, Sandlesh P, et al. Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles[J]. Neuro Oncol, 2022,24(2):197-209.
|
[2] |
Molinaro A M, Wiencke J K, Warrier G, et al. Interactions of age and blood immune factors and noninvasive prediction of glioma survival[J]. J Natl Cancer Inst, 2022,114(3):446-457.
|
[3] |
Roesler R, Souza B K, Isolan G R. Receptor tyrosine kinases as candidate prognostic biomarkers and therapeutic targets in meningioma[J]. Int J Mol Sci, 2021,22(21): 11352.
|
[4] |
Yamaguchi H, Nagamura Y, Miyazaki M. Receptor tyrosine kinases amplified in diffuse-type gastric carcinoma: potential targeted therapies and novel downstream effectors[J]. Cancers(Basel), 2022,14(15): 3750.
|
[5] |
Batool S M, Muralidharan K, Hsia T, et al. Highly sensitive EGFRvⅢ detection in circulating extracellular vesicle RNA of glioma patients[J]. Clin Cancer Res, 2022, 28(18):4070-4082.
|
[6] |
Cardona A F, Jaramillo V D, Ruiz-Pati, et al. Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation[J]. J Neurooncol, 2021,154(3):353-364.
|
[7] |
Yin W, Zhang K, Deng Q, et al. AZD3759 inhibits glioma through the blockade of the epidermal growth factor receptor and Janus kinase pathways[J]. Bioengineered, 2021,12(1):8679-8689.
|
[8] |
Kebudi R, Cakir F B, Bay S B, et al. Nimotuzumab-containing regimen for pediatric diffuse intrinsic pontine gliomas: a retrospective multicenter study and review of the literature[J]. Childs Nerv Syst, 2019,35(1):83-89.
|
[9] |
Fleischhack G, Massimino M, Warmuth M M, et al. Nimotuzumab and radiotherapy for treatment of newly diagnosed diffuse intrinsic pontine glioma(DIPG): a phase Ⅲ clinical study[J]. J Neurooncol, 2019,143(1):107-113.
|
[10] |
McCrea H J, Ivanidze J, O’Connor A, et al. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial[J]. J Neurosurg Pediatr, 2021,28(4):371-379.
|
[11] |
Naithani S, Trivedi P K, Sane P V. Characterization of the orf31-petG gene cluster from the plastid genome of populus deltoides[J]. Biochem Mol Biol Int, 1997,43(2):433-442.
|
[12] |
O'Rourke D M, Nasrallah M P, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR-T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Sci Transl Med, 2017,9(399): 984.
|
[13] |
Xia L, Liu J Y, Zheng Z Z, et al. BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma[J]. Mol Ther, 2021,29(10):3011-3026.
|
[14] |
Agliardi G, Liuzzi A R, Hotblack A, et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma[J]. Nat Commun, 2021,12(1):444.
|
[15] |
Sabbagh A, Beccaria K, Ling X, et al. Opening of the blood-brain barrier using low-intensity pulsed ultrasound enhances responses to immunotherapy in preclinical glioma models[J]. Clin Cancer Res, 2021,27(15):4325-4337.
|
[16] |
Wen P Y, Schiff D, Cloughesy T F, et al. A phase II study evaluating the efficacy and safety of AMG 102(rilotumumab) in patients with recurrent glioblastoma[J]. Neuro Oncol, 2011,13(4):437-446.
|
[17] |
Affronti M L, Jackman J G, Mcsherry F, et al. Phase II study to evaluate the efficacy and safety of rilotumumab and bevacizumab in subjects with recurrent malignant glioma[J]. Oncologist, 2018,23(8):889-e98.
|
[18] |
Das A, Alshareef M, Porto G, et al. Preconditioning with INC280 and LDK378 drugs sensitizes MGMT-unmethylated glioblastoma to temozolomide: Pre-clinical assessment[J]. J Neurol Sci, 2020,418:117102.
|
[19] |
Wen P Y, Drappatz J, de Groot J, et al. Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients naive to antiangiogenic therapy[J]. Neuro Oncol, 2018,20(2):249-258.
|
[20] |
Ellingson B M, Aftab D T, Schwab G M, et al. Volumetric response quantified using T1 subtraction predicts long-term survival benefit from cabozantinib monotherapy in recurrent glioblastoma[J]. Neuro Oncol, 2018,20(10):1411-1418.
|
[21] |
Li J, Hu K, Huang J, et al. Insights of fibroblast growth factor receptor 3 aberrations in pan-cancer and their roles in potential clinical treatment[J]. Aging(Albany NY), 2021,13(12):16541-16566.
|
[22] |
Stefano A L, Fucci A, Frattini V, et al. Detection, Characterization, and Inhibition of FGFR-TACC fusions in IDH wild-type glioma[J]. Clin Cancer Res, 2015,21(14):3307-3317.
|
[23] |
Schäfer N, Gielen G H, Kebir S, et al. Phase I trial of dovitinib(TKI258) in recurrent glioblastoma[J]. J Cancer Res Clin Oncol, 2016,142(7):1581-1589.
|
[24] |
Sharma M, Schilero C, Peereboom D M, et al. Phase II study of dovitinib in recurrent glioblastoma[J]. J Neurooncol, 2019,144(2):359-368.
|
[25] |
Thanasupawat T, Natarajan S, Rommel A, et al. Dovitinib enhances temozolomide efficacy in glioblastoma cells[J]. Mol Oncol, 2017,11(8):1078-1098.
|
[26] |
Ruscio V, Carai A, Baldo G, et al. Molecular landscape in infant high-grade gliomas: a single center experience[J]. Diagnostics(Basel), 2022,12(2): 372.
|
[27] |
Alharbi M, Mobark N A, Balbaid A, et al. Regression of ETV6-NTRK3 infantile glioblastoma after first-line treatment with larotrectinib[J]. JCO Precis Oncol, 2020,4(6): 796-800.
|
[28] |
König D, Hench J, Frank S, et al. Larotrectinib response in NTRK3 fusion-driven diffuse high-grade glioma[J]. Pharmacology, 2022,107(7-8):433-438.
|
[29] |
Doz F, Tilburg C M, Geoerger B, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors[J]. Neuro Oncol, 2022,24(6):997-1007.
|
|
|