|
|
Received: 20 December 2022
|
|
|
|
|
[1] |
McMillan A S,Wong M C M,Zheng J,et al. Widespread pain symptoms and psychological distress in southern Chinese with orofacial pain[J]. J Oral Rehabil, 2010, 37: 2-10.
|
[2] |
Chen Q,Zhang W,Sadana N,et al. Estrogen receptors in pain modulation: cellular signaling[J]. Biol Sex Differ, 2021, 12: 22.
|
[3] |
Grunberg V A, Reichman M, Lovette B C,et al. “No one truly understands what we go through and how to treat it”: lived experiences with medical providers among patients with orofacial pain[J]. Int J Environ Res Public Health, 2022, 19(16): 10396.
|
[4] |
陈 静,朱 敏. 稳定型咬合板联合关节灌洗术治疗颞下颌关节紊乱病的疗效评价[J]. 中国口腔颌面外科杂志, 2022, 20(6): 565-570.
|
[5] |
Ivkovic N, Racic M, Lecic R, et al. Relationship between symptoms of temporomandibular disorders and estrogen levels in women with different menstrual status[J]. J Oral Facial Pain Headache, 2018, 32(2): 151-158.
|
[6] |
Nagamine T. Two-hit theory by estrogen in burning mouth syndrome[J]. J Dent Sci, 2022, 17(4): 1833-1834.
|
[7] |
Gurvits G E, Tan A. Burning mouth syndrome[J]. World J Gastroenterol, 2013, 19(5): 665-72.
|
[8] |
Almeida L E, Doetzer A, Beck M L. Immunohistochemical markers of temporomandibular disorders: a review of the literature[J]. J Clin Med, 2023, 12(3): 789.
|
[9] |
Ribeiro M C, Fillingim R B, Wallet S M. Estrogen-induced monocytic response correlates with TMD Pain: a case control study[J]. J Dent Res, 2017, 96(3): 285-291.
|
[10] |
Wu G, Chen L, Wei G, et al. Effects of sleep deprivation on pain-related factors in the temporoman dibular joint[J]. J Surg Res, 2014, 192(1): 103-111.
|
[11] |
Bi R Y, Meng Z, Zhang P,et al. Estradiol upregulates voltage-gated sodium channel 1.7 in trigeminal ganglion contributing to hyperalgesia of inflamed TMJ[J]. PLoS One, 2017, 12(6): e0178589.
|
[12] |
Bi R Y, Ding Y, Gan Y H. A new hypothesis of sex-differences in temporomandibular disorders: estrogen enhances hyperalgesia of inflamed TMJ through modulating voltage-gated sodium channel 1.7 in trigeminal ganglion?[J]. Med Hypotheses, 2015, 84(2): 100-103.
|
[13] |
Kaur S, Mcdonald H, Tongkhuya S,et al. Estrogen exacerbates the nociceptive effects of peripheral serotonin on rat trigeminal sensory neurons[J]. Neurobiol Pain, 2021, 10: 100073.
|
[14] |
郭兆刚,栾 涛,邓 超,等. 胶质瘤中TRP基因家族预后模型的开发和验证[J]. 武警医学, 2022, 33(8): 675-680.
|
[15] |
Payrits M, Sághy é, Cseko K, et al. Estradiol sensitizes the transient receptor potential vanilloid 1 receptor in pain responses[J]. Endocrinology, 2017, 158(10): 3249-3258.
|
[16] |
Yamagata K, Sugimura M, Yoshida M,et al. Estrogens exacerbate nociceptive pain via up-regulation of TRPV1 and ANO1 in trigeminal primary neurons of female rats[J]. Endocrinology, 2016, 157(11): 4309-4317.
|
[17] |
Liu Y, Xu X X, Cao Y,et al. 17β-Estradiol exacerbated experimental occlusal interference-induced chronic masseter hyperalgesia by increasing the neuronal excitability and trpv1 function of trigeminal ganglion in ovariectomized rats[J]. Int J Mol Sci, 2021, 22(13): 6945.
|
[18] |
Seol S H, Chung G. Estrogen-dependent regulation of transient receptor potential vanilloid 1 (TRPV1) and P2X purinoceptor 3 (P2X3): implication in burning mouth syndrome[J]. J Dent Sci, 2022, 17(1): 8-13.
|
[19] |
Zhang J, Da Y, Lu J, et al. Changes in vesicular glutamate transporter 2 (Vglut2) and vesicular GABA transporter 1 (Vgat1) in the orofacial pain and temperature perception pathway under low estrogen conditions[J]. Neuro Endocrinol Lett, 2022, 43(2): 88-98.
|
[20] |
Xu S, Cheng Y, Keast J R,et al. 17beta-estradiol activates estrogen receptor beta-signalling and inhibits transient receptor potential vanilloid receptor 1 activation by capsaicin in adult rat nociceptor neurons[J]. Endocrinology, 2008, 149(11): 5540-5548.
|
[21] |
严传婷,杜宜楠,韩 静,等. 神经递质和调质参与导水管周围灰质痛觉调控的研究进展[J]. 生物化学与生物物理进展, 2021, 48(2): 158-170.
|
[22] |
Hori T, Takamori S. Physiological perspectives on molecular mechanisms and regulation of vesicular glutamate transport: lessons from calyx of held synapses[J]. Front Cell Neurosci, 2022, 15: 811892.
|
[23] |
Malik A R, Willnow T E. Excitatory amino acid transporters in physiology and disorders of the central nervous system[J]. Int J Mol Sci, 2019, 20(22): 5671.
|
[24] |
Pajarillo E, Rizor A, Lee J et al. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics[J]. Nature, 2019, 161: 107559.
|
[25] |
Nicholson K, MacLusky N J, Leranth C. Synaptic effects of estrogen[J]. Vitam Horm, 2020, 114: 167-210.
|
[26] |
Gross K S, Mermelstein P G. Estrogen receptor signaling through metabotropic glutamate receptors[J]. Vitam Horm, 2020, 114: 211-232.
|
[27] |
Tashiro A, Bereiter D A, Thompson R,et al. GABAergic influence on temporomandibular joint-responsive spinomedullary neurons depends on estrogen status[J]. Neuroscience, 2014, 259: 53-62.
|
[28] |
Umorin M, Stinson C, Bellinger LL,et al. Genes in the GABA pathway increase in the lateral thalamus of sprague-dawley rats during the proestrus/estrus phase[J]. J Cell Physiol, 2016, 231(5): 1057-1064.
|
[29] |
Kramer P R, Bellinger L L. Infusion of Gabrα6 siRNA into the trigeminal ganglia increased the myogenic orofacial nociceptive response of ovariectomized rats treated with 17β-estradiol[J]. Neuroscience, 2014, 278: 144-153.
|
[30] |
Viggiano A, Monda M, Viggiano A,et al. Trigeminal pain transmission requires reactive oxygen species production[J]. Brain Res, 2005, 1050(1-2): 72-78.
|
[31] |
Lee H I, Park B R, Chun S W. Reactive oxygen species increase neuronal excitability via activation of nonspecific cation channel in rat medullary dorsal horn neurons[J]. Korean J Physiol Pharmacol, 2017, 21(4): 371-376.
|
[32] |
Park E S, Gao X, Chung J M,et al. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons[J]. Neurosci Lett, 2006, 391(3): 108-11.
|
[33] |
Bae C, Wang J, Shim H S, et al. Mitochondrial superoxide increases excitatory synaptic strength in spinal dorsal horn neurons of neuropathic mice[J]. Mol Pain, 2018, 14: 1744806918797032.
|
[34] |
Ramírez R, Carvajal K, Rodriguez B,et al. TRPV1-estradiol stereospecific relationship underlies cell survival in oxidative cell death[J]. Front Physiol, 2020, 11: 444.
|
[35] |
Yazgan Y, Naziroglu M. Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17β-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats[J]. Mol Neurobiol, 2017, 54(10): 7620-7638.
|
[36] |
Szego E M, Csorba A, Janáky T,et al. Effects of estrogen on beta-amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis[J]. Neuroendocrinology, 2011, 93(2): 90-105.
|
[37] |
Sacher J, Wilson A A, Houle S,et al. Elevated brain monoamine oxidase a binding in the early postpartum period[J]. Arch Gen Psychiatry, 2010, 67(5): 468-474.
|
[38] |
Delgobo M, Agnes J P, Gonçalves R M, et al. N-acetylcysteine and alpha-lipoic acid improve antioxidant defenses and decrease oxidative stress, inflammation and serum lipid levels in ovariectomized rats via estrogen-independent mechanisms[J]. J Nutr Biochem, 2019, 67: 190-200.
|
|
|