[1] |
Becker U, Timmermann A, Ekholm O, et al. Alcohol Drinking patterns and risk of developing acute and chronic pancreatitis[J]. Alcohol, 2023,18(6):541-546.
|
[2] |
Wen C, Sun H, Pan K, et al. Molecular mechanism exploration of pancreatitis based on miRNA expression profile[J]. Clin Lab, 2019,65(3):337-342.
|
[3] |
Wang D, Zhu Z M, Tu Y L, et al. Identfication of key miRNAs in pancreatitis using bioinformatics analysis of microarray data[J]. Mol Med Rep, 2016,14(6):5451-5460.
|
[4] |
Bloomston M, Frankel W L, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J]. JAMA, 2007,297(17):1901-1908.
|
[5] |
Saluja A, Dudeja V, Dawra R, et al. Early intra-acinar events in pathogenesis of pancreatitis[J]. Gastroenterology, 2019,156(7):1979-1993.
|
[6] |
Dixit A K, Sarver A E, Yuan Z, et al. Comprehensive analysis of microRNA signature of mouse pancreatic acini: overexpression of miR-21-3p in acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2016,311(5):G974-G980.
|
[7] |
Hu L, Han D, Yu D, et al. Circulating blood miR-155 and miR-21 promote the development of acute pancreatitis and can be used to assess the risk stratification of pancreatitis[J]. J Healthc Eng, 2021,2021:2064162.
|
[8] |
Li X, Lin Z W, Wang L, et al. RNA-Seq analyses of the role of miR-21 in acute pancreatitis[J]. Cell Physiol Biochem, 2018,51(5):2198-2211.
|
[9] |
Chung C D, Liao J, Liu B, et al. Specific inhibition of Stat3 signal transduction by PIAS3[J]. Science, 1997,278(5344):1803-1805.
|
[10] |
Chen Z, Chen Y, Pan L, et al. Dachengqi Decoction attenuates inflammatory response via inhibiting hmgb1 mediated NF-kappaB and P38 MAPK signaling pathways in severe acute pancreatitis[J]. Cell Physiol Biochem, 2015,37(4):1379-1389.
|
[11] |
Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice[J]. Gastroenterology, 2014,146(4):1097-1107.
|
[12] |
Ma X, Conklin D J, Li F, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice[J]. Nat Commun, 2015,6:7151.
|
[13] |
Tang D S, Cao F, Yan C S, et al. Acinar cell-derived extracellular vesicle MiRNA-183-5p aggravates acute pancreatitis by promoting m1 macrophage polarization through downregulation of foxO1[J]. Front Immunol, 2022,13:869207.
|
[14] |
Shao A J, Hu W, Li C X, et al. Downregulation of lncRNA NEAT1 Relieves caerulein-induced cell apoptosis and inflammatory injury in AR42J cells through sponging miR-365a-3p in acute pancreatitis[J]. Cell Physiol Biochem, 2022,55(6):2286-2298.
|
[15] |
Song M, Wang Y, Zhou P, et al. MicroRNA-361-5p aggravates acute pancreatitis by promoting interleukin-17A secretion via impairment of nuclear factor IA-dependent hes1 downregulation[J]. J Med Chem, 2021,64(22):16541-16552.
|
[16] |
Shen Y, Xue C, You G, et al. miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-kappaB signaling pathway[J]. Exp Ther Med, 2021,22(2):795.
|
[17] |
Zhang K P, Zhang X Y. MiR-146b-3p protects against AR42J cell injury in cerulein-induced acute pancreatitis model through targeting Anxa2[J]. Open Life Sciences, 2021,16(1):255-265.
|
[18] |
颜世举, 董文静, 李志锐, 等. microRNA-22对调控软骨细胞自噬的影响及其在骨关节炎发病中的作用机制[J]. 武警医学, 2022,33(11):982-986.
|
[19] |
Zheng C, Ji Z, Xu Z, et al. Overexpression of miR-146a-5p ameliorates inflammation and autophagy in TLCs-Induced AR42J cell model of acute pancreatitis by inhibiting IRAK1/TRAF6/NF-kappaB pathway[J]. Ann Clin Lab Sci, 2022,52(3):416-425.
|
[20] |
Sun H, Tian J, Li J. MiR-92b-3p ameliorates inflammation and autophagy by targeting TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42J cells[J]. Int Immunopharmacol, 2020,88:106691.
|
[21] |
Miao B, Qi W J, Zhang S W, et al. miR-148a suppresses autophagy by down-regulation of IL-6/STAT3 signaling in cerulein-induced acute pancreatitis[J]. Pancreatology, 2019,19(4):557-565.
|
[22] |
Wan J, Yang X, Ren Y, et al. Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model[J]. Cell Death Dis, 2019,10(4):303.
|
[23] |
Ji L, Wang Z H, Zhang Y H, et al. ATG7-enhanced impaired autophagy exacerbates acute pancreatitis by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway[J]. Cell Death Dis, 2022,13(3):211.
|
[24] |
Jia A, Yang Z W, Shi J Y, et al. MiR-325-3p alleviates acute pancreatitis via targeting RIPK3[J]. Dig Dis Sci, 2022,67(9):4471-4483.
|
[25] |
Zhao Z F, Zhang Y, Sun Y, et al. Protective effects of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating oxidative stress through miR-136-5p downregulation[J]. Sci Prog, 2021,104(2):311996614.
|
[26] |
Yang W, Xu H W, Lu X R, et al. Overexpression of miR-122 impairs intestinal barrier function and aggravates acute pancreatitis by downregulating occludin expression[J]. Biochem Genet, 2022,60(1):382-394.
|
[27] |
Kleeff J, Whitcomb D C, Shimosegawa T, et al. Chronic pancreatitis[J]. Nat Rev Dis Primers, 2017,3:17060.
|
[28] |
Shen J, Wan R, Hu G Y, et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro[J]. Pancreatology, 2012,12(2):91-99.
|
[29] |
Ji T, Feng W, Zhang X, et al. HDAC inhibitors promote pancreatic stellate cell apoptosis and relieve pancreatic fibrosis by upregulating miR-15/16 in chronic pancreatitis[J]. Hum Cell, 2020,33(4):1006-1016.
|
[30] |
Zhang T, Zhang G, Yang W, et al. Lnc-PFAR facilitates autophagy and exacerbates pancreatic fibrosis by reducing pre-miR-141 maturation in chronic pancreatitis[J]. Cell Death Dis, 2021,12(11):996.
|
[31] |
李如月. 氧化苦参碱调节胰腺星状细胞株LTC-14中TLR4相关microRNAs发挥抗炎作用初步研究[D]. 河南:新乡医学院, 2018.
|
[32] |
Charrier A, Chen R, Chen L, et al. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes[J]. J of Cell Communi , 2014,8(2):147-156.
|
[33] |
Ohnishi N, Miyata T, Ohnishi H, et al. Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis[J]. GUT, 2003,52(10):1487-1493.
|
[34] |
Yan B, Cheng L, Jiang Z, et al. Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21[J]. Oxid Med Cell Longev, 2018,2018:1346958.
|
[35] |
Li Z, Rouse R. Co-sequencing and novel delayed anti-correlation identify function for pancreatic enriched microRNA biomarkers in a rat model of acute pancreatic injury[J]. BMC Genomics, 2018,19(1):297.
|
[36] |
Calvano J, Edwards G, Hixson C, et al. Serum microRNAs-217 and -375 as biomarkers of acute pancreatic injury in rats[J]. Toxicology, 2016,368:1-9.
|
[37] |
Endo K, Weng H, Kito N, et al. MiR-216a and miR-216b as markers for acute phased pancreatic injury[J]. Biomed Res, 2013,34(4):179-188.
|
[38] |
Diefenbach R J, Lee J H, Kefford R F, et al. Evaluation of commercial kits for purification of circulating free DNA[J]. Cancer Genet, 2018,228-229:21-27.
|
[39] |
Usborne A L, Smith A T, Engle S K, et al. Biomarkers of exocrine pancreatic injury in 2 rat acute pancreatitis models[J]. Toxicologic Pathology, 2014,42(1):195-203.
|
[40] |
Guz M, Jeleniewicz W, Cybulski M, et al. Serum miR-210-3p can be used to differentiate between patients with pancreatic ductal adenocarcinoma and chronic pancreatitis[J]. Biomedical Reports, 2021,14(1):10.
|
[41] |
Xin L, Gao J, Wang D, et al. Novel blood-based microRNA biomarker panel for early diagnosis of chronic pancreatitis[J]. Sci Rep, 2017,7:40019.
|
[42] |
Desai C S, Khan A, Bellio M A, et al. Characterization of extracellular vesicle miRNA identified in peripheral blood of chronic pancreatitis patients[J]. Mol Cell Biochem, 2021,476(12):4331-4341.
|
[43] |
Guo S, Qin H, Liu K, et al. Blood small extracellular vesicles derived miRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis[J]. Clin Transl Med, 2021,11(9):e520.
|
[44] |
Nakamaru K, Tomiyama T, Kobayashi S, et al. Extracellular vesicles microRNA analysis in type 1 autoimmune pancreatitis: increased expression of microRNA-21[J]. Pancreatology, 2020,20(3):318-324.
|
[45] |
Hamada S, Masamune A, Kanno A, et al. Comprehensive analysis of serum microRNAs in autoimmune pancreatitis[J]. Digestion, 2015,91(4):263-271.
|
[46] |
Blenkiron C, Askelund K J, Shanbhag S T, et al. Micro RNAs in mesenteric lymph and plasma during acute pancreatitis[J]. Ann Surg, 2014,260(2):341-347.
|
|
|