|
|
Relationship between ADC value of DWI examination and prognosis of pancreatic cancer patients with liver metastasis |
YANG Shanshan, SHEN Songbai, HU Liangxian, HUA Shuangyi |
Imaging Center, Anqing Hospital of PLA Navy, Anqing 246100, China |
|
|
Abstract Objective To explore the correlation between the apparent diffusion coefficient (ADC) value of diffusion weighted imaging (DWI) and the prognosis of of pancreatic cancer patients with liver metastasis.Methods A retrospective analysis was made on 96 patients with pancreatic cancer with liver metastasis confirmed by pathology in Anqing Hospital of PLA Navy from October 2019 to January 2022, and all the patients were treated with conventional MRI combined with enhanced scanning. The relevant data of the patients were collected, the ADC value of the patients' DWI was analyzed, and the patients were followed up for 12 months. Based on the survival status of the patients, they were divided into survival group (n=63) and death group (n=33), and multivariate logistic regression analysis was used to analyze the independent influencing factors that affected the treatment prognosis of the patients.Results Univariate analysis showed that there were statistical differences in age, maximum diameter of pancreatic tumor, diameter of liver metastases, number of liver metastases, lymph node metastasis, tumor differentiation, Alb and ADC values between the two groups (P<0.05), while there was no significant difference in gender, BMI, tumor location, nerve invasion, Hb, or PLT between the two groups (P>0.05). The results of multivariate analysis showed that the number of liver metastases [OR=2.702,95%CI(1.340,5.450)], vascular invasion [OR=1.906, 95%CI (1.052, 3.452)], tumor differentiation [OR=1.269,95%CL(1.025,1.571)] and ADC value [OR=0.422, 95%CI (0.216,0.824)] were independent influencing factors on the prognosis of patients with pancreatic cancer with liver metastasis (P<0.05), in which the ADC value was an independent protective factor, and the rest were independent risk factors.Conclusions The number of liver metastases, lymph node metastasis, degree of tumor differentiation and ADC value are independent factors for the prognosis of pancreatic cancer patients with liver metastases. Clinical treatment plans can be adjusted and improved according to the corresponding situation.
|
Received: 14 August 2023
|
|
|
|
|
[4] |
李 斌,陆风旗,陈昉铭,等.基于第8版AJCC胰腺癌TNM分期的CT、MRI检查比较[J].中华肝胆外科杂志,2020,26(9):661-665.
|
[1] |
GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol, 2019, 4(12):934-947.
|
[5] |
卢增新,赵振华,王丹丹,等.局部晚期肺癌肿瘤细胞密度与磁共振扩散加权成像表观扩散系数的相关性分析[J].中华医学杂志,2018,(41):3332-3335.
|
[2] |
金添强,戴朝六,徐 锋.肝胰同步手术切除与全身化疗治疗可切除胰腺癌伴肝转移患者的效果比较[J].临床肝胆病杂志,2022,38(3):622-628.
|
[6] |
Park J B, Kim Y H, Kim J, et al. Radiofrequency ablation of liver metastasis in patients with locally controlled pancreatic ductal adenocarcinoma[J]. J Vasc Interv Radiol, 2012,23(5): 635-41.
|
[3] |
Jin T, Dai C, Xu F. Surgical and local treatment of hepatic metastasis in pancreatic ductal adenocarcinoma: recent advances and future prospects[J]. Ther Adv Med Oncol, 2020,12: 1758835920933034.
|
[7] |
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019,69(1):7-34.
|
[4] |
李 斌,陆风旗,陈昉铭,等.基于第8版AJCC胰腺癌TNM分期的CT、MRI检查比较[J].中华肝胆外科杂志,2020,26(9):661-665.
|
[8] |
中国抗癌协会胰腺癌专业委员会.中国胰腺癌综合诊治指南(2020版)[J].中华外科杂志,2021,59(2):81-100.
|
[5] |
卢增新,赵振华,王丹丹,等.局部晚期肺癌肿瘤细胞密度与磁共振扩散加权成像表观扩散系数的相关性分析[J].中华医学杂志,2018,(41):3332-3335.
|
[9] |
Drouillard A, Manfredi S, Lepage C, et al. Epidemiology of pancreatic cancer[J]. Bull Cancer, 2018,105(1): 63-69.
|
[6] |
Park J B, Kim Y H, Kim J, et al. Radiofrequency ablation of liver metastasis in patients with locally controlled pancreatic ductal adenocarcinoma[J]. J Vasc Interv Radiol, 2012,23(5): 635-41.
|
[10] |
Rawla P, Thandra K C, Sunkara T. Pancreatic cancer and obesity: epidemiology, mechanism, and preventive strategies[J]. Clin J Gastroenterol, 2019,12(4): 285-291.
|
[7] |
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019,69(1):7-34.
|
[11] |
马晓璇,孙 鹏,李宏奇,等.磁共振ADC值定量研究在胰腺癌放疗早期疗效评价中的意义[J].医学影像学杂志,2021,31(9):1535-1538,1542.
|
[8] |
中国抗癌协会胰腺癌专业委员会.中国胰腺癌综合诊治指南(2020版)[J].中华外科杂志,2021,59(2):81-100.
|
[12] |
陈 凯,杨洪吉,邓小凡,等.淋巴结转移对胰腺癌患者预后的影响[J].中华普通外科杂志,2018,33(6):452-455.
|
[9] |
Drouillard A, Manfredi S, Lepage C, et al. Epidemiology of pancreatic cancer[J]. Bull Cancer, 2018,105(1): 63-69.
|
[13] |
Ma C, Li J, Boukar M B, et al. Optimized ROI size on ADC measurements of normal pancreas, pancreatic cancer and mass-forming chronic pancreatitis[J]. Oncotarget, 2017,8(58):99085-99092.
|
[14] |
Tahmassebi A, Wengert G J, Helbich T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019,54(2): 110-117.
|
[10] |
Rawla P, Thandra K C, Sunkara T. Pancreatic cancer and obesity: epidemiology, mechanism, and preventive strategies[J]. Clin J Gastroenterol, 2019,12(4): 285-291.
|
[15] |
张 悦,刘万花, 王 瑞, 等.3.0T磁共振不同b值表观扩散系数值与乳腺癌预后因子及分子分型相关性对比研究[J].磁共振成像,2018,9(6):422-426.
|
[11] |
马晓璇,孙 鹏,李宏奇,等.磁共振ADC值定量研究在胰腺癌放疗早期疗效评价中的意义[J].医学影像学杂志,2021,31(9):1535-1538,1542.
|
[16] |
史旭波,黄奕彬,彭焕佳,等.1.5T MRI及其ADC值与胰腺癌临床病理特征及预后的关系[J].现代消化及介入诊疗,2021,26(4):495-500.
|
[12] |
陈 凯,杨洪吉,邓小凡,等.淋巴结转移对胰腺癌患者预后的影响[J].中华普通外科杂志,2018,33(6):452-455.
|
[17] |
陆海凤,柳 勇,单 奔,等.3.0T扩散加权成像表观扩散系数在胰腺癌早期化疗疗效评估中的价值[J].南昌大学学报(医学版),2019,59(6):47-50,54.
|
[13] |
Ma C, Li J, Boukar M B, et al. Optimized ROI size on ADC measurements of normal pancreas, pancreatic cancer and mass-forming chronic pancreatitis[J]. Oncotarget, 2017,8(58):99085-99092.
|
[18] |
Qin L, Li A, Qu J, et al. Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG) [J]. J Neurooncol, 2018,137(2): 313-319.
|
[14] |
Tahmassebi A, Wengert G J, Helbich T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019,54(2): 110-117.
|
[19] |
Wu L F, Rao S X, Xu P J, et al. Pre-TACE kurtosis of ADCtotal derived from histogram analysis for diffusion-weighted imaging is the best independent predictor of prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2019,29(1):213-223.
|
[15] |
张 悦,刘万花, 王 瑞, 等.3.0T磁共振不同b值表观扩散系数值与乳腺癌预后因子及分子分型相关性对比研究[J].磁共振成像,2018,9(6):422-426.
|
[16] |
史旭波,黄奕彬,彭焕佳,等.1.5T MRI及其ADC值与胰腺癌临床病理特征及预后的关系[J].现代消化及介入诊疗,2021,26(4):495-500.
|
[17] |
陆海凤,柳 勇,单 奔,等.3.0T扩散加权成像表观扩散系数在胰腺癌早期化疗疗效评估中的价值[J].南昌大学学报(医学版),2019,59(6):47-50,54.
|
[18] |
Qin L, Li A, Qu J, et al. Normalization of ADC does not improve correlation with overall survival in patients with high-grade glioma (HGG) [J]. J Neurooncol, 2018,137(2): 313-319.
|
[19] |
Wu L F, Rao S X, Xu P J, et al. Pre-TACE kurtosis of ADCtotal derived from histogram analysis for diffusion-weighted imaging is the best independent predictor of prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2019,29(1):213-223.
|
[1] |
. [J]. Med. J. Chin. Peop. Armed Poli. Forc., 2024, 35(5): 439-442. |
|
|
|
|