|
|
Possible relationship between hypoxia-induced intestinal injury and irritable bowel syndrome |
LI Lingjian, ZHANG Xingguang, LIU Mingjun, et al |
|
[7] |
Di Tommaso N, Gasbarrini A, Ponziani F R. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021,18(23):12836.
|
[1] |
Shao Y Y, Guo Y, Feng X J, et al. Oridonin attenuates TNBS-induced post-inflammatory irritable bowel syndrome via PXR/NF-kappaB signaling[J]. Inflammation, 2021,44(2): 645-658.
|
[8] |
Lian P, Braber S, Varasteh S, et al. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture[J]. Sci Rep, 2021,11(1): 13186.
|
[2] |
韩 川,牟 东,庞日朝,等. 部队官兵急性高原暴露后肠易激综合征的发病情况及其对策[J]. 西南军医, 2021, 23(Z1): 403-407.
|
[3] |
于显钊,肖化军,谭川江,等.高原武警新兵肠易激综合征发病情况调查[J].武警医学, 2019, 30(7):637-638.
|
[4] |
赫玉宝,张方信,杜倩楠,等. 高原缺氧与肠黏膜屏障损伤研究[J]. 中国微生态学杂志, 2018, 30(12): 1470- 1474.
|
[9] |
Liu W, Fan X, Jian B, et al. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis[J]. Front Microbiol, 2023,14: 1289102.
|
[5] |
Li Y, Wang Y, Shi F, et al. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells[J]. Gut Microbes, 2022,14(1): 2096994.
|
[10] |
Dowdell A S, Cartwright I M, Goldberg M S, et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis[J]. Mol Biol Cell, 2020,31(20): 2249-2258.
|
[11] |
Progatzky F, Shapiro M, Chng S H, et al. Regulation of intestinal immunity and tissue repair by enteric glia[J]. Nature, 2021,599(7883): 125-130.
|
[6] |
王昱昊,施 艺,李文豪,等. 肠道菌群在高原低氧肠道损伤中的作用研究[J]. 中国临床解剖学杂志, 2021, 39 (6): 666-672.
|
[12] |
Xiao W, Wang W, Chen W, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation[J]. Mol Neurobiol, 2014,50(2): 274-289.
|
[7] |
Di Tommaso N, Gasbarrini A, Ponziani F R. Intestinal barrier in human health and disease[J]. Int J Environ Res Public Health, 2021,18(23):12836.
|
[13] |
Sun L, Li X, Guan H, et al. A Novel Role of A(2A)R in the maintenance of intestinal barrier function of enteric glia from hypoxia-induced injury by combining with mGluR5[J]. Front Pharmacol, 2021,12: 633403.
|
[8] |
Lian P, Braber S, Varasteh S, et al. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture[J]. Sci Rep, 2021,11(1): 13186.
|
[14] |
Pral L P, Fachi J L, Corrêa R O, et al. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J]. Trends Immunol, 2021,42(7): 604-621.
|
[9] |
Liu W, Fan X, Jian B, et al. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis[J]. Front Microbiol, 2023,14: 1289102.
|
[15] |
白 雪,刘贵琴,杨建鑫,等. 肠道菌群介导高原低氧对药物代谢的调节[J]. 药学学报, 2021, 56(10): 2787-2796.
|
[10] |
Dowdell A S, Cartwright I M, Goldberg M S, et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis[J]. Mol Biol Cell, 2020,31(20): 2249-2258.
|
[16] |
Hu Y, Pan Z, Huang Z, et al. Gut Microbiome-targeted modulations regulate metabolic profiles and alleviate altitude-related cardiac hypertrophy in rats[J]. Microbiol Spectr, 2022,10(1): e0105321.
|
[11] |
Progatzky F, Shapiro M, Chng S H, et al. Regulation of intestinal immunity and tissue repair by enteric glia[J]. Nature, 2021,599(7883): 125-130.
|
[17] |
Ailizire A, Wang X, Ma Y, et al. How hypoxia affects microbiota metabolism in mice[J]. Front Microbiol, 2023,14: 1244519.
|
[12] |
Xiao W, Wang W, Chen W, et al. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation[J]. Mol Neurobiol, 2014,50(2): 274-289.
|
[13] |
Sun L, Li X, Guan H, et al. A Novel Role of A(2A)R in the maintenance of intestinal barrier function of enteric glia from hypoxia-induced injury by combining with mGluR5[J]. Front Pharmacol, 2021,12: 633403.
|
[18] |
Pearce S C, Karl J P, Weber G J. Effects of short-chain fatty acids on intestinal function in an enteroid model of hypoxia[J]. Front Physiol, 2022,13: 1056233.
|
[14] |
Pral L P, Fachi J L, Corrêa R O, et al. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J]. Trends Immunol, 2021,42(7): 604-621.
|
[19] |
Mehandru S, Colombel J F. The intestinal barrier, an arbitrator turned provocateur in IBD[J]. Nat Rev Gastroenterol Hepatol, 2021,18(2): 83-84.
|
[15] |
白 雪,刘贵琴,杨建鑫,等. 肠道菌群介导高原低氧对药物代谢的调节[J]. 药学学报, 2021, 56(10): 2787-2796.
|
[20] |
Russo F, Chimienti G, Riezzo G, et al. Adipose tissue-derived biomarkers of intestinal barrier functions for the characterization of diarrhoea-predominant IBS[J]. Dis Markers, 2018,2018: 1827937.
|
[16] |
Hu Y, Pan Z, Huang Z, et al. Gut Microbiome-targeted modulations regulate metabolic profiles and alleviate altitude-related cardiac hypertrophy in rats[J]. Microbiol Spectr, 2022,10(1): e0105321.
|
[21] |
Barbara G, Grover M, Bercik P, et al. Rome foundation working team report on post-infection irritable bowel syndrome[J]. Gastroenterology, 2019,156(1): 46-58.
|
[17] |
Ailizire A, Wang X, Ma Y, et al. How hypoxia affects microbiota metabolism in mice[J]. Front Microbiol, 2023,14: 1244519.
|
[22] |
Jiang Y, Song J, Xu Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway[J]. Life Sci, 2021,275: 119254.
|
[18] |
Pearce S C, Karl J P, Weber G J. Effects of short-chain fatty acids on intestinal function in an enteroid model of hypoxia[J]. Front Physiol, 2022,13: 1056233.
|
[23] |
Xie Y, Zhan X, Tu J, et al. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J]. J Ethnopharmacol, 2021,272: 113925.
|
[19] |
Mehandru S, Colombel J F. The intestinal barrier, an arbitrator turned provocateur in IBD[J]. Nat Rev Gastroenterol Hepatol, 2021,18(2): 83-84.
|
[24] |
Filippone A, Ardizzone A, Bova V, et al. A combination of xyloglucan, pea protein and chia seed ameliorates intestinal barrier integrity and mucosa functionality in a rat model of constipation-predominant irritable bowel syndrome[J]. J Clin Med, 2022,11(23):7073.
|
[20] |
Russo F, Chimienti G, Riezzo G, et al. Adipose tissue-derived biomarkers of intestinal barrier functions for the characterization of diarrhoea-predominant IBS[J]. Dis Markers, 2018,2018: 1827937.
|
[25] |
Awad K, Barmeyer C, Bojarski C, et al. Impaired Intestinal permeability of tricellular tight junctions in patients with irritable bowel syndrome with mixed bowel habits (IBS-M)[J]. Cells, 2023,12(2):236.
|
[21] |
Barbara G, Grover M, Bercik P, et al. Rome foundation working team report on post-infection irritable bowel syndrome[J]. Gastroenterology, 2019,156(1): 46-58.
|
[26] |
Nguyen V T, Taheri N, Chandra A, et al. Aging of enteric neuromuscular systems in gastrointestinal tract[J]. Neurogastroenterol Motil, 2022,34(6): e14352.
|
[22] |
Jiang Y, Song J, Xu Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway[J]. Life Sci, 2021,275: 119254.
|
[27] |
Li Y, Li Y R, Jin Y, et al. Involvement of enteric glial cells in colonic motility in a rat model of irritable bowel syndrome with predominant diarrhea[J]. J Chem Neuroanat, 2023,128: 102235.
|
[23] |
Xie Y, Zhan X, Tu J, et al. Atractylodes oil alleviates diarrhea-predominant irritable bowel syndrome by regulating intestinal inflammation and intestinal barrier via SCF/c-kit and MLCK/MLC2 pathways[J]. J Ethnopharmacol, 2021,272: 113925.
|
[28] |
Shi X, Hu Y, Zhang B, et al. Ameliorating effects and mechanisms of transcutaneous auricular vagal nerve stimulation on abdominal pain and constipation[J]. JCI Insight, 2021,6(14):e150052.
|
[24] |
Filippone A, Ardizzone A, Bova V, et al. A combination of xyloglucan, pea protein and chia seed ameliorates intestinal barrier integrity and mucosa functionality in a rat model of constipation-predominant irritable bowel syndrome[J]. J Clin Med, 2022,11(23):7073.
|
[29] |
Mogilevski T, Rosella S, Aziz Q, et al. Transcutaneous vagal nerve stimulation protects against stress-induced intestinal barrier dysfunction in healthy adults[J]. Neurogastroenterol Motil, 2022,34(10): e14382.
|
[25] |
Awad K, Barmeyer C, Bojarski C, et al. Impaired Intestinal permeability of tricellular tight junctions in patients with irritable bowel syndrome with mixed bowel habits (IBS-M)[J]. Cells, 2023,12(2):236.
|
[30] |
Bonaz B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction[J]. Neurogastroenterol Motil, 2022,34(10): e14456.
|
[26] |
Nguyen V T, Taheri N, Chandra A, et al. Aging of enteric neuromuscular systems in gastrointestinal tract[J]. Neurogastroenterol Motil, 2022,34(6): e14352.
|
[31] |
Ishioh M, Nozu T, Miyagishi S, et al. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats[J]. Biochem Pharmacol, 2022,206: 115331.
|
[27] |
Li Y, Li Y R, Jin Y, et al. Involvement of enteric glial cells in colonic motility in a rat model of irritable bowel syndrome with predominant diarrhea[J]. J Chem Neuroanat, 2023,128: 102235.
|
[32] |
Ford A C, Sperber A D, Corsetti M, et al. Irritable bowel syndrome[J]. Lancet, 2020,396(10263): 1675-1688.
|
[28] |
Shi X, Hu Y, Zhang B, et al. Ameliorating effects and mechanisms of transcutaneous auricular vagal nerve stimulation on abdominal pain and constipation[J]. JCI Insight, 2021,6(14):e150052.
|
[33] |
Rengarajan S, Knoop K A, Rengarajan A, et al. A potential role for stress-induced microbial alterations in iga-associated irritable bowel syndrome with diarrhea[J]. Cell Rep Med, 2020,1(7):100124.
|
[29] |
Mogilevski T, Rosella S, Aziz Q, et al. Transcutaneous vagal nerve stimulation protects against stress-induced intestinal barrier dysfunction in healthy adults[J]. Neurogastroenterol Motil, 2022,34(10): e14382.
|
[34] |
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome[J]. Dig Dis Sci, 2020,65(3): 829-839.
|
[30] |
Bonaz B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction[J]. Neurogastroenterol Motil, 2022,34(10): e14456.
|
[35] |
Xiao L, Liu Q, Luo M, et al. Gut microbiota-derived metabolites in irritable bowel syndrome[J]. Front Cell Infect Microbiol, 2021,11: 729346.
|
[31] |
Ishioh M, Nozu T, Miyagishi S, et al. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats[J]. Biochem Pharmacol, 2022,206: 115331.
|
[36] |
Jiang W, Wu J, Zhu S, et al. The role of short chain fatty acids in irritable bowel syndrome[J]. J Neurogastroenterol Motil, 2022,28(4): 540-548.
|
[32] |
Ford A C, Sperber A D, Corsetti M, et al. Irritable bowel syndrome[J]. Lancet, 2020,396(10263): 1675-1688.
|
[37] |
Salvo-Romero E, Rodiño-Janeiro B K, Albert-Bayo M, et al. Eosinophils in the gastrointestinal tract: key contributors to neuro-immune crosstalk and potential implications in disorders of brain-gut interaction[J]. Cells, 2022,11(10):1644.
|
[33] |
Rengarajan S, Knoop K A, Rengarajan A, et al. A potential role for stress-induced microbial alterations in iga-associated irritable bowel syndrome with diarrhea[J]. Cell Rep Med, 2020,1(7):100124.
|
[38] |
Wu H, Zhan K, Rao K, et al. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis[J]. Biomed Pharmacother, 2022,149: 112811.
|
[34] |
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome[J]. Dig Dis Sci, 2020,65(3): 829-839.
|
[39] |
Wu L, Gao L, Jin X, et al. Ethanol Extract of mao jian green tea attenuates gastrointestinal symptoms in a rat model of irritable bowel syndrome with constipation via the 5-hydroxytryptamine signaling pathway[J]. Foods, 2023,12(5):1101.
|
[35] |
Xiao L, Liu Q, Luo M, et al. Gut microbiota-derived metabolites in irritable bowel syndrome[J]. Front Cell Infect Microbiol, 2021,11: 729346.
|
[40] |
Aksel G, Çorbacıoglu S K, Özen C. High-altitude illness: management approach[J]. Turk J Emerg Med, 2019,19(4): 121-126.
|
[36] |
Jiang W, Wu J, Zhu S, et al. The role of short chain fatty acids in irritable bowel syndrome[J]. J Neurogastroenterol Motil, 2022,28(4): 540-548.
|
[41] |
Sperber A D, Bangdiwala S I, Drossman D A, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study[J]. Gastroenterology, 2021,160(1):99-114.
|
[37] |
Salvo-Romero E, Rodiño-Janeiro B K, Albert-Bayo M, et al. Eosinophils in the gastrointestinal tract: key contributors to neuro-immune crosstalk and potential implications in disorders of brain-gut interaction[J]. Cells, 2022,11(10):1644.
|
[42] |
王晓英, 王 媛, 李连勇, 等. 严寒地区某部队肠易激综合征的横断面研究[J]. 解放军预防医学杂志, 2020, 38(11):29-31.
|
[38] |
Wu H, Zhan K, Rao K, et al. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis[J]. Biomed Pharmacother, 2022,149: 112811.
|
[43] |
白文栋, 许 琴, 彭红艳, 等. 高原人员肠屏障损伤评估及其与维生素D、IGF-1和IL-6的相关性[J]. 东南国防医药, 2022,24(3):328-330.
|
[39] |
Wu L, Gao L, Jin X, et al. Ethanol Extract of mao jian green tea attenuates gastrointestinal symptoms in a rat model of irritable bowel syndrome with constipation via the 5-hydroxytryptamine signaling pathway[J]. Foods, 2023,12(5):1101.
|
[44] |
Zhang X G, Xu W, Zhong W C, et al. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau[J]. J Zhejiang Univ Sci B, 2023: 1-16.
|
[40] |
Aksel G, Çorbacıoglu S K, Özen C. High-altitude illness: management approach[J]. Turk J Emerg Med, 2019,19(4): 121-126.
|
[41] |
Sperber A D, Bangdiwala S I, Drossman D A, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study[J]. Gastroenterology, 2021,160(1):99-114.
|
[42] |
王晓英, 王 媛, 李连勇, 等. 严寒地区某部队肠易激综合征的横断面研究[J]. 解放军预防医学杂志, 2020, 38(11):29-31.
|
[43] |
白文栋, 许 琴, 彭红艳, 等. 高原人员肠屏障损伤评估及其与维生素D、IGF-1和IL-6的相关性[J]. 东南国防医药, 2022,24(3):328-330.
|
[44] |
Zhang X G, Xu W, Zhong W C, et al. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau[J]. J Zhejiang Univ Sci B, 2023: 1-16.
|
[1] |
. [J]. Med. J. Chin. Peop. Armed Poli. Forc., 2022, 33(4): 349-352. |
|
|
|
|