丁酸钠对严重烫伤大鼠小肠黏膜血流量和微血管通透性的影响
唐富波1,2, 郑金光1, 张文静3, 胡森4, 白晓东1
1. 100039 北京,武警总医院: 烧伤整形科
2.300309 天津,武警后勤学院研究生大队
3. 100039 北京,武警总医院:感染性疾病科
4.100048 北京,解放军总医院第一附属医院烧伤研究所休克与器官障碍实验室
通讯作者:白晓东,E-mail: baixiaotmu@126.com

作者简介:唐富波,硕士,医师。

摘要

目的 探讨丁酸钠(sodium butyrate,BTR)对严重烫伤大鼠小肠黏膜血流量和微血管通透性的影响。方法 雄性SD大鼠48只,体重240~260 g,随机分为假烫组、烫伤组和丁酸钠组,每组16只。烫伤组和丁酸钠组采用沸水烫伤背部15 s、腹部8 s,造成50%总体表面积(TBSA)Ⅲ度烫伤;假烫组采用37 ℃温水浸泡相同部位及时间。于烫伤后立即腹腔注射丁酸钠(400 mg/kg)或等体积生理盐水。烫伤后3 h和6 h测定小肠黏膜血流量;检测血浆二胺氧化酶(DAO)活性;取小肠组织检测含水率及微血管通透性。结果 假烫组大鼠小肠黏膜血流量丰富,血浆DAO活性正常,小肠微血管通透性和含水率为正常水平。大鼠严重烫伤后,小肠黏膜血流量迅速降低,DAO活性显著增强,小肠微血管通透性和含水率明显增高。烫伤后3 h,丁酸钠组与烫伤组比较,小肠组织微血管通透性[(4.26±0.98)μg/ml vs (5.53±1.31)μg/ml]、含水率[(63.67±3.35)% vs (74.32±3.74)%]、血浆DAO[(43.76±9.34)U/L vs (73.29±11.34) U/L]均显著降低,小肠黏膜血流量明显升高[(67.21±9.47)BPU vs (55.18±10.48)BPU](均 P<0.05)。烫伤后6 h,丁酸钠组与烫伤组比较,小肠微血管通透性[(6.89±1.12)μg/ml vs (8.92±1.69) μg/ml]、含水率[(68.45±4.52)% vs (80.76±3.94)%]、血浆DAO[(47.59±10.71)U/L vs (89.87±11.93) U/L]均明显降低,小肠黏膜血流量明显升高[(47.77±8.93)BPU vs (25.64±7.42)BPU](均 P<0.05)。结论 丁酸钠能增加严重烫伤大鼠小肠黏膜血流量,降低小肠微血管内皮通透性和组织水肿,对小肠组织具有保护作用。

关键词: 丁酸钠; 烫伤; 小肠; 含水率; 血管通透性
中图分类号:R644
Effects of sodium butyrate on intestinal micro-vascular permeability and blood flow in rats with severe scald injury
TANG Fubo1,2, ZHENG Jinguang1, ZHANG Wenjing3, HU Sen4, and BAI Xiaodong1
1. Department of Burn and Plastic Surgery, General Hospital of the Chinese People’s Armed Police Force,Beijing 100039,China;
2. Graduate Term, Logistics University of Chinese People’s Armed Police Force,Tianjin 300309,China;
3. Department of Infectious Diseases, General Hospital of the Chinese People’s Armed Police Force,Beijing 100039,China;
4. Laboratory of Shock and Organ Dysfunction,Burns Institute,The First Affiliated Hospital of PLA General Hospital,Beijing 100048,China
Abstract

Objective To investigate the small intestine micro-vascular permeability and blood flow protective effects of sodium butyrate on rats following 50%TBSA full-thickness burns.Methods 48 SD rats, weighing 240-260 g, were randomly divided into three groups: sham group, scald group, scald + BTR group. Rats in scald group and scald + BTR group were subjected to 50% TBSA third-degree burns by immersing the back for 15 seconds and the abdomen for 8 seconds in boiling water. The sham group was immersed in 37 ℃ water instead. And then 1ml BTR (400 mg/kg) or 1ml normal saline was intraperitoneally injected, respectively. Blood flow in small intestine was measured by Doppler 3 and 6 hours after injury. Blood was drawn from the heart at 3 and 6 hours after injury for measurement of serum diamine oxidase (DAO); the small intestine tissues were harvested for the measurement of micro-vascular permeability and the changes in tissue water content.Results Compared with scald group, the activity of DAO [(43.76±9.34)U/L vs (73.29±11.34) U/L], the micro-vascular permeability [(4.26±0.98)μg/ml vs (5.53±1.31) μg/ml] and the rate of tissue water [(63.67±3.35)% vs (74.32±3.74)%] in scald + BTR group were significantly lower at 3 hours after scald injury (all P<0.05). In addition, BTR was shown to significantly increase the IMBF level [(67.21±9.47)BPU vs (55.18±10.48)BPU] induced by scald injury at 3 hours ( P<0.05). The result at 6 hours after scald injury was similar to 3 hours.Conclusions Sodium butyrate has significant protective effects on small intestinal micro-vascular permeability and blood flow in rats with severe scald injury.

Keyword: sodium butyrate; scald; small intestine; tissue water content; vascular permeability

严重烧伤后, 全身循环血液重新分布, 肠道明显缺血、缺氧, 炎性因子等刺激引起肠道微血管内皮细胞代谢功能障碍, 结构功能发生改变, 甚至发生细胞坏死或凋亡, 进而引起内皮细胞间隙增宽和肠道微血管通透性迅速增加, 大量体液经过细胞间隙进入组织, 使全身血量进一步减少, 造成小肠组织水肿和功能损伤[1]。因此, 降低肠道微血管通透性对于减少体液进入小肠组织引起肠水肿和功能损伤, 减少全身循环血量丢失具有重要意义。组蛋白去乙酰化酶抑制药(histone deacetylase inhibitors, HDACIs)是近年来缺氧和休克后细胞保护药物的研究热点, HDACIs通过提高机体细胞的抗炎、抗缺氧等能力, 能有效保护心、肝、肺、脑、肾等脏器 [2, 3, 4, 5, 6]。研究表明, 短链脂肪酸类HDACIs丁酸钠, 具有一定的抗炎和保护脏器的功能[7]。本研究的目的是利用严重烫伤大鼠模型观察丁酸钠对肠道微血管通透性和肠黏膜血流量的影响。

1 材料与方法
1.1 动物模型及分组

清洁级雄性SD大鼠48只(北京华阜康生物科技股份有限公司), 60~70日龄, 体重240~260 g, 适应性饲养2周, 自由饮食饮水, 实验前12 h禁食, 4 h禁饮。随机分为假烫组、烫伤组、丁酸钠组, 每组16只大鼠。使用戊巴比妥钠注射液(50 mg/kg)腹腔注射麻醉大鼠后, 行颈、背、腹部备皮, 并予颈静脉置管。丁酸钠组和烫伤组采用沸水烫伤背部15 s, 腹部8 s, 造成50%总体表面积(TBSA)Ⅲ 度烫伤, 假烫组采用37 ℃温水浸泡相同时间。丁酸钠组伤后立即腹腔注射丁酸钠(400 mg/kg, 美国sigma公司), 烫伤组和假烫组均腹腔注射等体积生理盐水。以烫伤后3、6 h作为观察点, 每个点含8只大鼠, 各观察点前30 min经颈静脉注入FITC-dextran葡聚糖(70 ku, 美国sigma公司)2.5 mg, 30 min后处死动物, 测定各项指标。

1.2 指标检测及方法

1.2.1 小肠黏膜血流量 采用激光多普勒血流仪(瑞典PERIMED公司)检测, 沿大鼠腹白线无菌开腹, 选择暴露小肠黏膜的部位, 镊子使其平铺, 防止扭转。红外探头的中心移至小肠黏膜表面, 自动监测血流量, 时间约45 s, 仪器自动输出血流量平均值。血流灌注单位为BPU(BPU表示数码信号)。

1.2.2 小肠组织微血管通透性 通过测定烫伤后由血管内渗透到组织中的经异硫氰酸荧光素标记的葡聚糖(FITC-dextran)含量表示。选取烫伤后3 h和6 h作为观察点, 在观察点前30 min经颈静脉注入葡聚糖, 在30 min后行血管灌洗至灌洗液清亮为止, 灌洗时间控制在5 min以内。取小肠组织制作匀浆, 5000 r/min离心10 min, 提取上清液后使用荧光酶标仪(发射光480 nm, 接收光560 nm)检测小肠组织内标记物荧光度, 与标准曲线对照后计算浓度。

1.2.3 小肠组织含水率 采用干湿重法检测。取适量小肠组织, 滤纸将小肠组织表面液体吸干, 迅速将其放置于电子天平准确称重, 将组织放入电烤箱中80 ℃烘烤72 h, 称重烘干后的组织并记录数值。小肠组织含水率(%)=(烘干前质量-烘干后质量)/烘干前质量× 100%。

1.2.4 血浆二胺氧化酶(DAO)活性 DAO的活性采用DAO试剂盒(南京建成科技有限公司)测定。在烫伤后3、6 h, 心脏穿刺取血, 4 ℃条件下3000 r/min离心10 min, 提取80 μ l上清液和800 μ l试剂混匀, 倒入比色皿, 波长设定为340 nm, 在20 s时观察并记录吸光度值A1, 37 ℃水浴10 min后, 记录吸光度值A2。按照说明书所列公式计算DAO值。

1.3 统计学处理

应用SPSS 13.0统计软件处理数据, 计量资料采用± s表示, 组间均数比较采用方差分析, 两两比较采用SNK法。以P< 0.05为差异有统计学意义。

2 结果
2.1 小肠黏膜血流量

与假烫组比较, 烫伤组和丁酸钠组血流量均降低, 烫伤组3、6 h分别降低54%(P< 0.05)和79%(P< 0.05), 丁酸钠组3、6 h分别降低44%(P< 0.05)和61%(P< 0.05); 与烫伤组比较, 丁酸钠组明显缓解烫伤引起的小肠黏膜血流量降低, 维持血流量相对稳定(均P< 0.05, 表1)。

2.2 小肠组织微血管通透性和含水率

表1。与假烫组比较, 烫伤3 h后烫伤组、丁酸钠组小肠组织葡聚糖含量及含水率均有所升高(均P< 0.05); 丁酸钠组与烫伤组比较, 均有所降低(均P< 0.05)。与假烫组比较, 烫伤6 h后烫伤组、丁酸钠组小肠组织葡聚糖含量及含水率均明显升高(均P< 0.05); 丁酸钠组明显低于烫伤组, 差异均有统计学意义(均P< 0.05)。

2.3 血浆DAO活性的变化

与假烫组比较, 烫伤组和丁酸钠组血浆DAO水平均升高, 烫伤组3、6 h分别升高211%(P< 0.05)和270%(P< 0.05), 丁酸钠组3、6 h分别升高85%(P< 0.05)和96%(P< 0.05)。与烫伤组比较, 丁酸钠组明显抑制大鼠烫伤引起的血浆DAO的水平增高, 减轻小肠损伤(均P< 0.05, 表1)。

表1 丁酸钠对严重烫伤大鼠小肠微血管通透性、含水率、黏膜血流量、血浆DAO活性的影响(n=8; \(\overline{x}\)± s)
3 讨论

肠道是消化和吸收营养物质的器官, 也是体内和体外相联系的最大空腔脏器, 含有数量、种类繁多的细菌, 是人体最大的“ 细菌储存库” [8]。这些细菌形成较为稳定的微生态系统, 在生理条件下对机体无明显损害。严重烧伤后, 各种炎性因子、缺血、缺氧、内毒素等因素影响, 导致肠道微血管内皮缺血、缺氧, 肠道细菌由内皮细胞间隙入血形成脓毒血症和多脏器衰竭等。因此, 研究保护烧伤后肠道微血管内皮屏障的药物, 减少微血管通透性, 对于减轻肠道损伤、减少细菌入血形成脓毒血症和多脏器衰竭十分重要[9, 10]

本实验采用严重烫伤大鼠模型观察烫伤后小肠微血管内皮屏障、黏膜血流量和小肠损伤的关系。DAO是肠绒毛上皮细胞内的标记酶, 检测血浆DAO活性的变化, 能反映小肠黏膜的损伤情况。与Luo等[11]的研究结果类似, 本实验数据表明, 严重烫伤后大鼠微血管通透性明显升高, 血管内液体向组织内渗出, 导致小肠组织含水率的增加和黏膜血流量的持续下降, 进而引起血浆DAO活性增高及严重的小肠损伤。

HDACIs具有改善心血管病、自身免疫性疾病、神经退行性病变预后的功能[12, 13, 14], 也是一种新型的靶向抗癌药物[15]。丁酸钠是一种短链脂肪酸类HDACIs, 具有广泛的生物调节作用, 如抗抑郁与抗焦虑作用[16]、抑制神经凋亡作用[17, 18, 19]、抑制炎性反应的作用等[7, 20]。Ma等[21]报道, 在IPEC-J2细胞模型中, 丁酸钠对紧密连接蛋白ZO-1的表达具有促进作用。Wang等[22]的实验表明, 丁酸钠具有促进紧密连接蛋白Claudin-1转录的作用, 从而保护肠屏障。Han等[23]采用腹膜炎小鼠模型证实, 丁酸钠可以降低肠道通透性, 保护近端消化道。此外, Xun 等[24]在严重烧伤动物实验中发现, 丁酸钠可以抑制炎性反应和中性粒细胞浸润, 减轻严重烧伤引起的急性肺损伤, 保护肺脏功能。

本实验结果表明, 丁酸钠治疗3 h后, 与烫伤组大鼠比较, 小肠黏膜血流量明显升高, 小肠微血管通透性、含水率及血浆DAO均有所降低。这一结果在丁酸钠治疗6 h后更为明显, 与烫伤组比较有统计学差异。说明丁酸钠能够明显缓解严重烫伤引起的小肠黏膜血流量降低, 抑制小肠微血管通透性增加和水肿, 降低血浆DAO活性, 对小肠功能具有一定的保护作用。

Saito等[25]的研究表明, 在体外细胞和脓毒症小鼠实验中, 微血管内皮细胞α -微管蛋白降解, 引起肌球蛋白轻链2(myosin light chain 2, MLC2)磷酸化, 导致微血管内皮细胞收缩和细胞间隙增宽, 进而使内皮屏障遭受破坏, 血管内液体向组织内渗出, 引起组织水肿和器官功能障碍。组蛋白去乙酰化酶6(histone deacetylase6, HDAC6)可以调节α -微管蛋白的去乙酰化水平, 促进其降解[26]。丁酸钠对严重烫伤大鼠小肠微血管内皮通透性和黏膜血流量的保护作用可能与丁酸钠抑制HDAC6的去乙酰化水平有关。其具体作用机制还需进一步实验研究明确。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

参考文献
[1] 盛志勇. 严重烧伤后多器官功能衰竭综合征的防治[J]. 创伤外科杂志, 2001, 1(1): 1-3. [本文引用:1]
[2] Gonzales E R, Chen H, Munuve R M, et al. Hepatoprotection and severeity rescue by histone deacetylase inhibitor valproic acid in fatal hemorrhagic shock[J]. J Trauma, 2008, 65(3): 554-565. [本文引用:1]
[3] Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice[J]. FASEB J, 2008, 22(10): 3549-3560. [本文引用:1]
[4] Cianciolo C C, Skrypnyk N I, Brilli L L, et al. Histone deacetylase inhibitor enhances recovery after AKI[J]. J Am Soc Nephrol, 2013, 24(6): 943-953. [本文引用:1]
[5] Fessler E B, Chibane F L, Wang Z, et al. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery[J]. Curr Pharm Des, 2013, 19(28): 5105-5120. [本文引用:1]
[6] 周国勇. 丙戊酸钠对烧伤休克大鼠肺微血管内皮细胞活化和通透性的影响[J]. 解放军医药杂志, 2013, 25(1): 11-15. [本文引用:1]
[7] Zhang T, Xia M, Zhan Q, et al. Sodium butyrate reduces organ injuries in mice with severe acute pancreatitis through inhibiting HMGB1 expression[J]. Dig Dis Sci, 2015, 60(7): 1991-1999. [本文引用:2]
[8] Magnotti L J, Deitch E A. Burns, bacterial translocation, gut barrier function, and failure[J]. J Burn Care Rehabil, 2005, 26(5): 383-391. [本文引用:1]
[9] Birukova A A, Adyshev D, Gorshkov B, et al. GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction[J]. Am J Physiol Lung Cell Mol Physiol, 2006, 290(3): 540-548. [本文引用:1]
[10] Saito S, Lasky J A, Guo W, et al. Pharmacological inhibition of HDAC6 attenuates endothelial barrier dysfunction induced by thrombin[J]. Biochem Biophys Res Commun, 2011, 408(4): 630-634. [本文引用:1]
[11] Luo H M, Du M H, Lin Z L, et al. Valproic acid treatment inhibits hypoxia-inducible factor 1alpha accumulation and protects against burn-induced gut barrier dysfunction in a rodent model[J]. PLoS One, 2013, 8(10): e77523. [本文引用:1]
[12] D’Mello S R. Histone deacetylases as targets for the treatment of human neurodegenerative diseases[J]. Drug News Perspect, 2009, 22(9): 513-524. [本文引用:1]
[13] Hancock W W, Akimova T, Beier U H, et al. HDAC inhibitor therapy in autoimmunity and transplantation[J]. Ann Rheum Dis, 2012, 71(2): 46-54. [本文引用:1]
[14] Colussi C, Illi B, Rosati J, et al. Histone deacetylase inhibitors: keeping momentum for neuromuscular and cardiovascular diseases treatment[J]. Pharmacol Res, 2010, 62(1): 3-10. [本文引用:1]
[15] Jazirehi A R. Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy[J]. Anticancer Drugs, 2010, 21(9): 805-813. [本文引用:1]
[16] Gundersen B B, Blendy J A. Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety[J]. Neuropharmacology, 2009, 57(1): 67-74. [本文引用:1]
[17] Chuang D M, Leng Y, Marinova Z, et al. Multiple roles of HDAC inhibition in neurodegenerative conditions[J]. Trends Neurosci, 2009, 32(11): 591-601. [本文引用:1]
[18] Kilgore M, Miller C A, Fass D M, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer[J]. Neuropsychopharmacology, 2010, 35(4): 870-880. [本文引用:1]
[19] Sun J, Wang F, Li H, et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice[J]. Biomed Res Int, 2015, 2015(1): 395895-395895. [本文引用:1]
[20] Vieira E L, Leonel A J, Sad A P, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis[J]. J Nutr Biochem, 2012, 23(5): 430-436. [本文引用:1]
[21] Ma X, Fan P X, Li L S, et al. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions[J]. J Anim Sci, 2012, 90(4): 266-268. [本文引用:1]
[22] Wang H B, Wang P Y, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. [本文引用:1]
[23] Han X, Song H, Wang Y, et al. Sodium butyrate protects the intestinal barrier function in peritonitic mice[J]. Int J Clin Exp Med, 2015, 8(3): 4000-4007. [本文引用:1]
[24] Liang X, Wang R S, Wang F, et al. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats[J]. PloS one, 2013, 8(7): 191-195. [本文引用:1]
[25] Saito S, Lasky J A, Guo W, et al. Pharmacological inhibition of HDAC6 attenuates endothelial barrier dysfunction induced by thrombin[J]. Biochem Biophys Res Commun, 2011, 408(4): 630-634. [本文引用:1]
[26] Kim D J, Martinez-Lemus L A, Davis G E. EB1, p150Glued, and Clasp1 control endothelial tubulogenesis through microtubule assembly, acetylation, and apical polarization[J]. Blood, 2013, 121(17): 3521-3530. [本文引用:1]