光强度对双固化树脂黏接剂与牙本质黏接强度的影响
祖斌1, 苗莉2
1.100062,北京市崇文口腔医院修复科
2.100700,北京军区总医院口腔科

作者简介:祖斌,本科学历,主治医师。

摘要
目的

比较不同光强度对双固化树脂黏接剂与牙本质的黏接强度影响。

方法

将40颗恒磨牙,暴露咬合面牙本质后随机分为两组,每组20颗牙。DC组用双重固化树脂黏接剂Clearfil DC Bond处理,SE组用光固化树脂黏接剂Clearfil SE Bond处理后,端端对接从近中方向光照。将黏接试样沿光照方向切成5片(1 mm/片,L1~5),再将每片垂直黏接界面切出5个微拉伸样本(1 mm×1 mm),测试两组黏接强度(mTBS)。

结果

随着穿透牙本质厚度增加,光强度降低导致黏接强度下降。部分样本在制备时发生界面折断,SE组存留样本L1 70%,L2 30%,L3~5为0;DC组L1~5分别为68%,86%,56%,44%和38%。SE 组L1~5黏接强度分别为:(13.22±8.64)MPa,(7.49±3.88)MPa,0、0、0 MPa;DC组为:(11.25±4.11)MPa,(9.69±5.07) MPa,(8.13±4.88)MPa,(6.83±3.53)MPa和(5.56±2.95) MPa。两组表面两层黏接强度无统计学差异。

结论

双固化黏接剂与牙本质的黏接强度随着固化光穿透牙本质深度的增加而降低。

关键词: 光强度; 双固化; 黏接剂; 黏接强度
Effects of irradiation intensity on the bond strength of dual-cure resin adhesive
ZU Bin1, MIAO Li2
1.Department of Prosthodontics,Beijing Chongwen Hospital of Stomatology,Beijing 100062, China
2.Department of Stomatology, Beijing Military General Hospital of PLA, Beijing 100700, China
Abstract
Objective

To evaluate the intensity of irradiation after penetrating dentin, and compare the effects of cure-light on the micro-tensile bond strength (mTBS) of dual-cure dental adhesive.

Methods

The superficial dentin of occlusal surface (40 molars) were exposed and applied with Clearfil DC Bond(A ) or Clearfil SE Bond (B), then bonded together through light-cure from mesial dejection. The bond specimens were cut into sticks(bonding area 1 mm×1 mm) along the direction of light-cure (L1-5) , and tested with Micro-Tensile Tester for mTBS. The statistical analysis was performed using SPSS11.0.

Results

After penetrating dentin of 1 mm and 2 mm thickness, the light irradiation decreased to (114±28) mWcm-2 and (28±11)mWcm-2, respectively. Some stick samples were broken during preparation, and the fracture occurred at the bonding interface. The remaining samples were SE: L1 70%, L2 30%, L3-L5 0%; DC: L1 to L5 was 68%, 86%, 56%, 44%,38% . The mTBS were (13.22±8.64) MPa (L1), (7.49±3.88) MPa (L2) and 0 MPa (L3 and L4) for SE,(11.25±4.11) MPa (L1), (9.69±5.07) MPa (L2), (8.13±4.88) MPa (L3), (6.83±3.53) MPa (L4) and (5.56±2.95) MPa for DC. There was no significant difference between DC and SE regarding the mTBS of L1 and L2.

Conclusions

The mTBS of dual-cureresin adhesive decreased with the increase of cure-light penetrating depth of dentin.

Keyword: irradiation intensity; dual-cure; resin adhesive; bond strength

目前, 口腔黏接最常用光固化树脂黏接系统(包括树脂黏接剂和树脂黏接水门汀), 依固化模式分为光固化和双固化两种[1]。临床上, 经常遇到纤维桩黏接修复、全瓷黏接修复等需要在弱光甚至无光照的环境下进行黏接修复的情况, 光固化系统已不能满足临床需要, 而需采用双固化树脂黏接系统。双固化树脂黏接系统结合了光固化和化学固化的优点, 含有两种引发体系, 可以在光照聚合的同时, 通过化学聚合反应来弥补仅由单纯光固化所引起的固化不全问题[2, 3, 4, 5], 即在临床上弱固化光照条件下的深部黏接时, 经常利用快速的光固化来获得良好的最初固位, 然后通过化学固化来完成在窝洞深处或更厚修复体下树脂黏接剂的进一步固化。本研究通过观察固化光穿透不同深度的牙本质后, 产生的光强度变化对双重固化树脂黏接剂和牙本质的黏接强度的影响, 以期为临床提供指导。

1 材料与方法
1.1 材料

外科拔除的40颗新鲜无龋离体恒磨牙。本研究使用的树脂黏接剂为:双固化黏接剂DC-Bond(DC)和光固化黏接剂SE-Bond(SE)(Kuraray公司, 日本)。成分组成及使用方法见表1

表1 两种黏接剂的组成成分和使用方法
1.2 实验仪器

光固化灯(Bluephase, Ivoclar Vivadent公司, 列支敦士登), 测光表(Bluphasemeter, Ivoclar Vivadent公司, 列支敦士登), 切片机(LEICA SP 1600, LEICA公司, 德国), 超声荡洗机(BioSonic VC 100, Coltè ne/Whaledent公司, 瑞士), 微拉伸强度测定仪(BISCO公司, 美国)。

1.3 实验方法

1.3.1 微拉伸样本制备 所有操作均由同一人完成。将选取的40颗新鲜无龋离体恒磨牙, 去除近中面和咬合面釉质(LEICA SP 1600, LEICA公司, 德国)。将咬合面牙本质用600目水砂纸打磨制作玷污层, 然后超声荡洗(BioSonic VC 100, Coltè ne/Whaledent公司, 瑞士), 随机分为两组, 每组20颗牙。DC组咬合面牙本质用DC处理, SE组咬合面牙本质用SE处理后, 端端对接从近中方向光照10 s(650 mW/cm2)(n=10)(Bluephase, Ivoclar Vivadent公司, 列支敦士登)。37 ℃水中保存24 h后, 用切片机沿光照方向(近中→ 远中)切出5片(1 mm厚/片)牙本质(L1~5), 再将每片牙本质垂直黏接界面切出5个牙本质-牙本质条状黏接样本(截面积1 mm× 1 mm)。

1.3.2 微拉伸样本分组与测试 根据固化光穿透牙本质深度, 每种黏接剂分为5组(L1~5), 用微拉伸强度测定仪(BISCO公司, 美国)测试黏接强度(mTBS)。

1.4 统计学处理

使用SPSS 11.0软件, 采用单因素方差分析并组间两两比较(One-way ANOVA/ Dunnett T3)同种黏接剂不同固化深度的黏接强度, 对相同固化深度不同黏接剂的黏接强度进行t检验, P< 0.05为差异有统计学意义。

2 结果
2.1 mTBS比较

固化光穿透不同牙本质深度后两组的mTBS比较见表2。随着固化光穿透牙本质深度增加, 光强度降低, 两组mTBS均有下降。当固化光穿透牙本质深度为1.5~2.5 mm时, 两组mTBS比较无统计学差异, 当固化光穿透牙本质深度为3~4 mm时, SE组的牙本质黏接强度为0, DC组的mTBS高于SE(P< 0.05, 表2)。

表2 固化光穿透牙本质深度对黏接强度(MPa)的影响(n=20; x̅± s)
2.2 层间存留样本比较

部分黏接样本在制备时发生界面折断, SE组存留样本L1 70%, L2 30%, L3~5为0; DC组L1~5分别为68%, 86%, 56%, 44% 和38%。两组 L1和L2两层黏接强度无统计学差异。随着光照深度增加, DC的mTBS有下降。

3 讨论

在临床上, 有时不得不通过将固化光透过某种媒介物发挥光固化作用, 如纤维桩黏接、瓷贴面黏接或全瓷冠黏固等。但固化光的强度受媒介物的种类和厚度的影响[6], 如光照能量在空气中会被吸收, 造成其随着光源距离的增加而出现照射强度衰减[6, 7, 8]。近已有研究表明, 固化光通过复合树脂后光照能量会迅速减小[9], 造成下方复合树脂转换率降低, 进而降低复合树脂材料的物理性能, 并使树脂内未转化的单体增加, 造成修复失败甚至影响牙髓组织[10, 11, 12]。因此, 复合树脂充填材料的聚合程度在很大程度上取决于光照射强度及其照射时间[13]。当固化光穿透瓷片时, 随着瓷片厚度增加, 树脂水门汀的固化程度与硬度均下降[14, 15, 16]

双固化树脂黏接系统结合了光和化学固化的优良特性, 能够规避单纯光固化产生固化不全的弊端。本研究观察到, 用光固化黏接剂SE黏接牙本质, 随着固化光穿透牙本质深度的增加, 固化光强度逐渐减弱, 导致树脂聚合转换率降低, 黏接剂固化不全, 黏接强度下降。有研究发现, 含有自固化催化剂成分的树脂水门汀在所有的光照模式中较不含自固化成分者均能取得相同的, 甚至更高的硬度和固化深度[14]。在修复体透光性弱的情况下, 双固化树脂黏接剂具有的化学固化体系可弥补由光照不足导致的固化不全问题[17]。本研究结果证实了这一点, 双固化黏接剂DC Bond的黏接效果在穿透牙本质厚度小于2 mm 时与光固化黏接剂SE Bond相同, 在弱光条件下(牙本质厚度大于2 mm 时)优于光固化黏接剂。

然而, 光照仍是影响双固化树脂黏接剂聚合、物理性能、黏接性能的重要因素[18], 双固化树脂黏接剂在无光照情况下聚合不全[1]。本研究也证实了这一点, 随着牙本质厚度增加, 固化光强度降低, 双固化DC的牙本质黏接强度也有下降。因此, 在临床弱光固化情况下进行黏接修复时, 双固化树脂黏接剂尽管优于光固化黏接剂, 但应尽可能选用高强度LED固化灯并延长照射时间来弥补光源距离增加所造成的光强度衰减, 或选择配置标准型光导棒或聚光透镜的高强度LED光固灯等措施, 以弥补因光强度减弱导致的黏接强度降低。

The authors have declared that no competing interests exist.

参考文献
[1] 赵佳萌, 王焱, 曾晨光, . 光照模式对双固化树脂粘接剂聚合程度的影响[J]. 中华口腔医学研究杂志(电子版), 2013, 7(5): 357-361. [本文引用:2]
[2] Papazoglou E, Rahiotis C, Kakaboura A, et al. Polymerization efficiency of dual-polymerized resin cements light-irradiated through ceramics and laboratory-processed resin composite[J]. Eur J Prosthodont Restor Dent, 2008, 16(1): 15-19. [本文引用:1]
[3] Feng L, Carvalho R, Suh B I. Insufficient cure under the condition of highirradiance and short irradiation time[J]. Dent Mater, 2009, 25(3): 283-289. [本文引用:1]
[4] Breschi L, Mazzoni A, Ruggeri A, et al. Dental adhesion review: agingand stability of the bonded interface[J]. Dent Mater, 2008, 24(1): 90-101. [本文引用:1]
[5] Jung H, Friedl K H, Hiller K A, et al. Curing efficiency of differentpolymerization methods through ceramic restorations[J]. Clin OralInvestig, 2001, 5(3): 156-161. [本文引用:1]
[6] Aravamudhana K, Rakowskib D, Fanc P L. Variation of depth of cure and intensity withdistance using LED curing lights[J]. Dent mater, 2006, 22(11): 988-994. [本文引用:2]
[7] Felix C A, Price R B. The effect of distance from light source on light intensity from curing lights[J]. J Adhes Dent, 2003, 5(4): 283-291. [本文引用:1]
[8] Rode K M, Kawano Y, Turbino M L. Evaluation of curing light distance on resin composite microhardness and polymerization[J]. Oper Dent, 2007, 32(6): 571-578. [本文引用:1]
[9] Price R B, Murphy D G, Dérand T. Light energy transmissionthrough cured resin composite and human dentin[J]. Quintessence Int, 2000, 31(9): 659-667. [本文引用:1]
[10] Ruyter I E, Oysaed H. Conversion in different depths ofultraviolet and visible light activated composite materials[J]. Acta Odontol Scand , 1982, 40(3): 179-192. [本文引用:1]
[11] Ferracane J L, Mitchem J C, Condon J R, et al. Wear and marginal breakdown of composites with various degrees of cure[J]. J Dent Res, 1997, 76(8): 1508-1516. [本文引用:1]
[12] Sideridou I D, Achilias D S. Elution study of unreactedBis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cureddental resins and resin composites using HPLC[J]. J BiomedMater Res B Appl Biomater, 2005, 74(2): 617-626. [本文引用:1]
[13] Leprince J G, Palin W M, Hadis M A, et al. Progress in dime thacrylate-based dental composite technology and curing efficiency[J]. Dent Mater, 2013, 29(2): 139-156. [本文引用:1]
[14] Jung H, Friedl K H, Hiller K A, et al. Polymerization efficiencyof different photocuring units through ceramic discs[J]. Oper Dent, 2006, 31(1): 68-77. [本文引用:2]
[15] Kilinc E, Antonson S A, Hardigan P C, et al. The effect of ceramic restoration shade and thickness on the polymerization of light- and dual-cure resin cements[J]. Oper Dent, 2011, 36(6): 661-669. [本文引用:1]
[16] Pires-de-Souza Fde C, Drubi Filho B, Casemiro L A, et al. Polymerization shrinkage stress of composites photo-activated by different light sources[J]. Braz Dent J, 2009, 20(4): 319-324. [本文引用:1]
[17] Yoshida K, Atsuta M. Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics[J]. Am J Dent, 2006, 19(5): 303-307. [本文引用:1]
[18] Lee J W, Cha H S, Lee J H. Curing efficiency of various resin-based materials polymerized through different ceramic thicknesses and curing time[J] . J Adv Prosthodont, 2011, 3(3): 126-131. [本文引用:1]