|
|
Received: 07 January 2020
|
|
|
|
|
[1] |
Siegel R L, Miller K D, Jemal A. Cancer statistics [J]. CA-Cancer J Clin, 2019,69(1):7-34.
|
[2] |
Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product [J]. J Bacteriol, 1987, 169(12):5429-5433.
|
[3] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096):816-821.
|
[4] |
Osborn M J,Belanto J J, Tolar J, et al. Gene editing and its application for hematological diseases [J]. Hematol, 2016, 104(1):18-28.
|
[5] |
Barrangou, R, Fremaux, C, Deveau, H, et al. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 315(5819):1709-1712.
|
[6] |
Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2015, 339(11):197-208.
|
[7] |
Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121):823-826.
|
[8] |
刘铁柱, 李阿茜, 李乃哲, 等. 基于CRISPR/cas9文库筛选的慢病毒库包装方法研究 [J]. 中华实验和临床病毒学杂志, 2019, 33(2):207-211.
|
[9] |
Watanabe S, Shimada S, Akiyama Y, et al. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality [J]. Int J Cancer, 2019, 145(1):192-205.
|
[10] |
Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 may induce pancreatic cancer progression as a key player of extracellular vesicles effects as evidenced in the in vitro MIA PaCa-2 model system [J]. Int J Mol Sci, 2018, 19(12): 3878-3890.
|
[11] |
Belvedere R, Bizzarro V, Forte G, et al. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway [J]. Sci Rep, 2016, 6:296-316.
|
[12] |
Barkeer S, Chugh S, Karmakar S, et al. Novel role of O-glycosyl transferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells [J].BMC Cancer, 2018, 18:1157-1170.
|
[13] |
Chugh S,Barkeer S,Rachagani S,et al. Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in mice [J]. Gastroenterology, 2018, 155(5):1608-1624.
|
[14] |
Li W, Xu H, Xiao T, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens [J]. Genome Biol, 2014, 15(12):554.
|
[15] |
He Y, Ye M, Zhou L, et al. High Rab11-FIP4 expression predicts poor prognosis and exhibits tumor promotion in pancreatic cancer [J]. Int J Oncol, 2017, 50(2):396-404.
|
[16] |
Muzumdar M D, Chen P Y, Dorans K J, et al. Survival of pancreatic cancer cells lacking KRAS function [J]. Nat Commun, 2017, 8(1):1090.
|
[17] |
Zhang D, Li L, Jiang H, et al. Constitutive IRAK4 activation underlies poor prognosis and chemoresistance in pancreatic ductal adenocarcinoma [J]. Clin Cancer Res, 2016, 23(7):1748-1759.
|
[18] |
Shuiliang Y, Neetha P, Ming L, et al. CRABP-Ⅱ enhances pancreatic cancer cell migration and invasion by stabilizing interleukin 8 expression [J]. Oncotarget, 2017, 8(32):52432-52444.
|
[19] |
Harada T, Yamamoto H, Kishida S, et al. Wnt5b-associated exosomes promote cancer cell migration and proliferation [J]. Cancer Sci, 2017, 108(1):42-52.
|
[20] |
Lal S, Cheung E C, Zarei M, et al. CRISPR knockout of the HuR gene causes a xenograft lethal phenotype [J]. Mol Cancer Res, 2017, 15(6):696-707.
|
[21] |
Michael A, O’Sullivan E, Anne M D, et al. IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth [J]. Oncotarget, 2017, 8(48):83370-83383.
|
[22] |
Santoro R, Zanotto M, Carbone C, et al. MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity [J]. Anticancer Res, 2018, 38(4):1937-1946.
|
[23] |
Watanabe S, Shimada S, Akiyama Y, et al. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality[J]. Int J Cancer, 2018, 145(1):192-205.
|
[24] |
Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 may induce pancreatic cancer progression as a key player of extracellular vesicles effects as evidenced in the in vitro MIA PaCa-2 model system [J]. Int J Mol Sci, 2018, 19(12):e 3878.
|
[25] |
Yuza K, Nakajima M, Nagahashi M, et al. Different roles of sphingosine kinase 1 and 2 in pancreatic cancer progression [J]. J Surg Res, 2018, 232:186-194.
|
[26] |
Barkeer S, Chugh S, Karmakar S, et al. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells [J]. BMC Cancer, 2018, 18(1):1157
|
[27] |
Chugh S, Barkeer S, Rachagani S,et al. Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in mice [J]. Gastroenterology, 2018, 155(5):1608-1624.
|
[28] |
Wang SC, Nassour I, Xiao S, et al. SWI/SNF component ARID1A restrains pancreatic neoplasia formation [J]. Gut, 2019, 68(7):1259-1270.
|
[29] |
Bin L, Hai Y, Christian P, et al. The effect of GPRC5a on the proliferation, migration ability, chemotherapy resistance, and phosphorylation of GSK-3β in pancreatic cancer [J]. Int J Mol Sci, 2018, 19(7):e1870.
|
[30] |
Liu B, Yang H, Taher L, et al. Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer [J]. Transl Oncol, 2018, 11(3):700-714.
|
[31] |
Kohei Y, Tetsuhide I, Masami M, et al. Using CRISPR/Cas9 to knock out amylase in acinar cells decreases pancreatitis-induced autophagy [J]. Biomed Res Int, 2018, 2018:1-8.
|
[32] |
Stock K, Borrink R, Mikesch J H, et al. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells [J]. Cancer Cell Int, 2019, 19(1): 77.
|
[33] |
Abdalla M Y, Ahmad I M, Rachagani S, et al. Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by Heme Oxygenase-1 inhibition [J]. Transl Res, 2019, 207(5):56-69.
|
[34] |
Liu X, Huang Y, Yuan H, et al. Disruption of oncogenic liver-intestine cadherin (CDH17) drives apoptotic pancreatic cancer death [J]. Cancer Lett, 2019, 454(10):204-214.
|
[35] |
Hwang M, Jun D W, Kang E H, et al. EI24, as a component of autophagy, is involved in pancreatic cell proliferation [J]. Front Oncol, 2019,9:652.
|
[36] |
Abdalla M , Ahmad I, Rachagani S, et al. Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by Heme Oxygenase-1 inhibition [J]. Transl Res, 2019, 207(5):56-69.
|
[37] |
Li M, Xie H, Liu Y, et al. Knockdown of hypoxia-inducible factor-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer [J]. J Control Release, 2019, 304:204-215.
|
[38] |
Bakke J, Wright WC, Zamora AE, et al. Genome-wide CRISPR screen reveals PSMA6 to be an essential gene in pancreatic cancer cells [J]. BMC Cancer, 2019, 19 (1):253-273.
|
[39] |
Steinhart Z, Pavlovic Z, Chandrashekhar M, et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors [J]. Nat Med. 2017, 23(1):60-68.
|
[40] |
Wang B, Krall E B, Aguirre A, et al. ATXN1L, CIC, and ETS transcription factors modulate sensitivity to MAPK pathway inhibition [J]. Cell Rep, 2017, 18(6):1543-1557.
|
[41] |
Marie R, Marine L, Fabian G, et al. Gene therapy for pancreatic cancer: specificity, issues and hopes [J]. Int J Mol Sci, 2017, 18(6):1231-1239.
|
[42] |
张 雨, 王可洲, 郭中坤, 等. CRISPR/Cas9基因编辑技术及其在肿瘤免疫治疗中的应用[J]. 中国医药生物技术, 2019, 14(4):26-31.
|
[43] |
Chiou S H, Winters I P, Wang J, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing [J]. Genes Dev, 2015, 29(14):1576-1585.
|
[44] |
Ran F, Hsu P, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity [J]. Cell, 2013, 154(6):1380-1389.
|
[45] |
Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. [J]. Nat Methods, 2014, 11(4): 399-402.
|
[46] |
Tsai S Q, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing [J]. Nat Biotechno, 2014, 32(6):569-576.
|
[1] |
. [J]. Med. J. Chin. Peop. Armed Poli. Forc., 2017, 28(12): 1189-1192. |
|
|
|