Farooq S, de Araujo R E. Identifying high performance gold nanoshells for singlet oxygen generation enhancement [J]. Photodiagnosis Photodyn Ther, 2021, 35: 102466.
Martins Antunes de Melo W C, Celiesiūte-Germaniene R, Simonis P, et al. Antimicrobial photodynamic therapy(aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields [J]. Virulence, 2021, 12(1): 2247-2272.
[12]
Fontana C R, Abernethy A D, Som S, et al. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms [J]. J Periodontal Res, 2009, 44(6): 751-759.
[13]
Jing-Jing W,Jia Z,Cong-Yuan X, et al. Hypericin: A natural anthraquinone as promising therapeutic agent [J]. Phytomedicine, 2023, 111:154654.
[14]
Huang T C, Chen C J, Ding S J, et al. Antimicrobial efficacy of methylene blue-mediated photodynamic therapy on titanium alloy surfaces in vitro [J]. Photodiagnosis Photodyn Ther, 2019, 25: 7-16.
[15]
Julia P,Marianne W,Sonja N, et al. Effective Biofilm eradication on orthopedic implants with methylene blue based antimicrobial photodynamic therapy in vitro [J]. Antibiotics, 2023, 12(1): 118-118.
Najm M, Pourhajibagher M, Badirzadeh A, et al. Photodynamic therapy using toluidine blue O(TBO) Dye as a photosensitizer against leishmania major [J]. Iran J Public Health, 2021, 50(10): 2111-2120.
[18]
Sandland J, Boyle R W. Photosensitizer antibody-drug conjugates: past, present, and future [J]. Bioconjug Chem, 2019, 30(4): 975-993.
[19]
Araújo L R A,Tomé C A,Santos M I C, et al. Azides and porphyrinoids: synthetic approaches and applications. part 2- azides, phthalocyanines, subphthalocyanines and porphyrazines [J]. Molecules, 2020, 25(7): 1745-1745.
[20]
Vieira C,Santos A,Mesquita Q M, et al. Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: Effectiveness on bacteria and fungi planktonic/biofilm forms and viruses [J]. J Porphyr Phthalocya, 2019, 23(4-5): 12.
[21]
Kodedová M, Liska V, Mosinger J, et al. Light-induced antifungal activity of nanoparticles with an encapsulated porphyrin photosensitizer [J]. Microbiol Res, 2023, 269: 127303.
[22]
Rak J, Pouckova P, Benes J, et al. Drug delivery systems for phthalocyanines for photodynamic therapy [J]. Anticancer Res, 2019, 39(7): 3323-3339.
[23]
Lin A L, Chen J H, Hong J W, et al. A phthalocyanine-based self-assembled nanophotosensitizer for efficient in vivo photodynamic anticancer therapy [J]. J Inorg Biochem, 2021, 217: 111371.
[24]
Galstyan A. Turning photons into drugs: phthalocyanine-based photosensitizers as efficient photoantimicrobials [J]. Chemistry, 2021, 27(6): 1903-1920
[25]
Spesia M B, Durantini E N. Evolution of phthalocyanine structures as photodynamic agents for bacteria inactivation [J]. Chem Rec, 2022, 22(4): e202100292 .
[26]
de Andrade G P, de Souza T F M, Cerchiaro G, et al. Hypericin in photobiological assays: An overview [J]. Photodiagnosis Photodyn Ther, 2021, 35: 102343.
Najafi S, Khayamzadeh M, Paknejad M, et al. An in vitro comparison of antimicrobial effects of curcumin-based photodynamic therapy and chlorhexidine, on aggregatibacter actinomycetemcomitans [J]. J Lasers Med Sci, 2016, 7(1): 21-25
Zhang Y, Ren T, Gou J, et al. Strategies for improving the payload of small molecular drugs in polymeric micelles [J]. J Control Release, 2017, 261: 352-366.
[36]
Semenov K N, Ivanova D A, Ageev S V, et al. Evaluation of the C(60) biodistribution in mice in a micellar Extra Ox form and in an oil solution [J]. Sci Rep, 2021, 11(1): 8362.
Jiwoong C,InCheol S,Hee H S, et al. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment[J]. Adv Drug Deliver Rev, 2022, 186:114344.
[39]
Shihui D,Wenbo W,Tingting P, et al. Near-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocomposite [J]. Nanoscale Adv, 2021, 3(8): 2325-2333.
[40]
Yuting L,Yufei W,Hong S, et al. Graphene Quantum dots modified upconversion nanoparticles for photodynamic therapy [J]. Int J Mol Sci, 2022, 23(20):12558.
Nazarzadeh E Z,Rezvan J,Parvaneh N, et al. Metal-based nanostructures/plga nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications. [J]. ACS Appl Mater Interfaces, 2020, 12(3): 3279-3300.
[43]
Nakal-Chidiac A, García O, García-Fernández L, et al. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties [J]. Carbohydr Polym, 2020, 250: 116973.