[1] |
Benjamin E J, Blaha M J,Chiuve S E, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association[J]. Circulation,2017,135(10):e146-e603.
|
[2] |
杨国红,周 欣,姜铁民,等. 高血压发病机制的基因学研究进展[J]. 武警医学,2013,24(11):685-688.
|
[3] |
Mimran A, du Cailar G. Dietary sodium: the dark horse amongst cardiovascular and renal risk factors[J]. Nephrol Dial Transplant,2008,23(7):2138-2141.
|
[4] |
Varagic J,Frohlich E D,Susic D, et al. AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure[J]. Am J Physiol Heart Circ Physiol,2008,294(2):H853-858.
|
[5] |
Zhang X,Li H,Li Y, et al. Increased circulating Ly6Chigh monocyte subsets are correlated with cerebral infarct size in cerebral ischemia/reperfusion mouse models[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2016,32(3):294-298.
|
[6] |
Zeng S,Zhou X,Ge L, et al. Monocyte subsets and monocyte-platelet aggregates in patients with unstable angina[J]. Journal of thrombosis and thrombolysis, 2014, 38 (4): 439-446.
|
[7] |
Zhou X,Liu XL,Ji WJ, et al. The Kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-Elevation myocardial infarction: associations with 2-Year cardiovascular events[J]. Medicine, 2016, 95 (18): e3466-e3475.
|
[8] |
Zhou X,Zhang L,Ji W J, et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation[J]. PLoS One,2013,8(4):e60332-e60344.
|
[9] |
Barbosa R M,Speretta G F,Dias D P, et al. Increased expression of macrophage migration inhibitory factor in the nucleus of the solitary tract attenuates renovascular hypertension in rats[J]. Am J Hypertens,2017, 30 (4): 435-443.
|
[10] |
DuBrock H M,Rodriguez-Lopez J M,LeVarge B L, et al. Macrophage migration inhibitory factor as a novel biomarker of portopulmonary hypertension[J]. Pulm Circ,2016,6(4):498-507.
|
[11] |
Harwani S C,Ratcliff J,Sutterwala F S, et al. Nicotine mediates CD161a+renal macrophage infiltration and premature hypertension in the spontaneously hypertensive rat[J]. Circ Res,2016,119(10):1101-1115.
|
[12] |
Meng X M,Tang P M,Li J, et al. Macrophage phenotype in kidney injury and repair[J]. Kidney Dis (Basel),2015,1(2):138-146.
|
[13] |
Bruchfeld A,Wendt M, Miller E J. Macrophage migration inhibitory factor in clinical kidney disease[J]. Front Immunol,2016,7(1): 1-7.
|
[14] |
Tokuda K, Kai H, Kuwahara F, et al. Pressure-independent effects of angiotensin II on hypertensive myocardial fibrosis[J]. Hypertension, 2004, 43 (2): 499-503.
|
[15] |
Ogata T, Miyauchi T, Sakai S, et al. Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway[J]. J Am Coll Cardiol, 2004, 43 (8): 1481-1488.
|
[16] |
Damilano F, Franco I, Perrino C, et al. Distinct effects of leukocyte and cardiac phosphoinositide 3-kinase gamma activity in pressure overload-induced cardiac failure[J]. Circulation, 2011, 123 (4): 391-399.
|
[17] |
Huang X R, Chung A C, Yang F, et al. Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling[J]. Hypertension, 2010, 55 (5): 1165-1171.
|
[18] |
Machnik A,Neuhofer W,Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism[J]. Nat Med,2009,15(5):545-552.
|
[19] |
Titze J, Machnik A. Sodium sensing in the interstitium and relationship to hypertension[J]. Curr Opin Nephrol Hypertens,2010,19(4):385-392.
|
[20] |
Machnik A,Dahlmann A,Kopp C, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats[J].Hypertension,2010,55(3):755-761.
|
[21] |
Gao F,Han ZQ,Zhou X, et al. High salt intake accelerated cardiac remodeling in spontaneously hypertensive rats: time window of left ventricular functional transition and its relation to salt-loading doses[J]. Clin Exp Hypertens,2011,33(7):492-499.
|
[22] |
Yang G H,Zhou X,Ji WJ, et al. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats[J]. Am J Physiol Heart Circ Physiol,2014,306(4):H598-609.
|
[23] |
Hogan B M, Black B L. Developmental biology: diversity in the lymphatic vasculature[J]. Nature,2015,522(7554):37-38.
|
[24] |
Kim K W, Song J H. Emerging roles of lymphatic vasculature in immunity[J]. Immune Netw,2017,17(1):68-76.
|
[25] |
Cui Y. Impact of lymphatic vessels on the heart[J]. Thorac Cardiovasc Surg,2010,58(1):1-7.
|
[26] |
Sun Q N,Wang Y F, Guo Z K. Reconstitution of myocardial lymphatic vessels after acute infarction of rat heart[J]. Lymphology,2012,45(2):80-86.
|
[27] |
Rockson S G. Lymphatics and the heart: the importance of visceral lymphatic function in health and disease[J]. Lymphat Res Biol,2007,5(1):1-2.
|
[28] |
Li X,Shimada T,Zhang Y, et al. Ultrastructure changes of cardiac lymphatics during cardiac fibrosis in hypertensive rats[J]. Anat Rec (Hoboken),2009,292(10):1612-1618.
|
[29] |
Cursiefen C,Chen L,Borges L P, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment[J]. J Clin Invest,2004,113(7):1040-1050.
|
[30] |
Kerjaschki D,Regele H M,Moosberger I, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates[J]. J Am Soc Nephrol,2004,15(3):603-612.
|
[31] |
Schoppmann S F,Horvat R, Birner P. Lymphatic vessels and lymphangiogenesis in female cancer: mechanisms, clinical impact and possible implications for anti-lymphangiogenic therapies (Review)[J]. Oncol Rep,2002,9(3):455-460.
|
[32] |
Maruyama K,Ii M,Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages[J]. J Clin Invest,2005,115(9):2363-2372.
|
[33] |
Kerjaschki D. The crucial role of macrophages in lymphangiogenesis[J]. J Clin Invest,2005,115(9):2316-2319.
|
[1] |
陈红青,李志香,李春燕. 妊娠期高血压疾病170例孕妇分娩镇痛安全性及结局分析[J]. 武警医学, 2019, 30(2): 159-161. |
[2] |
王静,于林君,樊慧娟,朱航. 氨氯地平联合替米沙坦对原发性高血压患者血管内皮功能及生活质量的影响[J]. 武警医学, 2018, 29(7): 709-708. |
[3] |
雒芳玲, 马雅霞综述, 宋晓鸿审校. 老年单纯收缩期高血压发病机制及中西医结合治疗进展[J]. 武警医学, 2018, 29(3): 319-322. |
[4] |
苑杨, 杜鹏, 栾新平. 干预基质金属蛋白酶-9对高血压脑出血后期脑水肿治疗的影响[J]. 武警医学, 2018, 29(2): 185-187. |
[5] |
洪绍彩, 陈凯宁, 黄富登, 牟强, 宾世平, 汪斌, 黄丽玲. 广西农村人群“三高”疾病现状的调查分析[J]. 武警医学, 2018, 29(1): 17-20. |
[6] |
陶元. 妊娠期高血压患者产后颈动脉血管结构及功能变化[J]. 武警医学, 2017, 28(9): 917-920. |
[7] |
张明明, 石琳, 李晓惠, 王琍, 刘杨, 林瑶, 丛晓辉, 齐铁雄. 高血压患儿病因及其靶器官损害相关因素分析[J]. 武警医学, 2017, 28(8): 780-783. |
[8] |
周丽丽, 王燕, 刘玉娜, 王赫男. 高血压门诊血压达标与血压家庭监测150例调查[J]. 武警医学, 2017, 28(8): 852-852. |
[9] |
郭婷婷,王 莉,娄 莹,庞会敏,黄一玲,康 健,华 潞,李一石. 原发性高血压昼夜血压特点及其影响因素[J]. 武警医学, 2017, 28(6): 578-581. |
[10] |
张 芳,吴 迪,吕大民,常 琳,刘 丽,蒋文军. 超声心动图分析H型高血压合并急性心肌梗死患者心功能情况[J]. 武警医学, 2017, 28(5): 514-516. |
[11] |
姜昊, 高春华, 徐浩钦, 王瑞军 综述, 彭宝淦 审校. 交感神经与高血压关系的研究进展[J]. 武警医学, 2017, 28(3): 297-299. |
[12] |
张燕, 李炜, 高凌根. 冠心病合并难治性高血压患者临床特征及其预后[J]. 武警医学, 2017, 28(12): 1205-1208. |
[13] |
苑亚东, 靖明, 夏云忠, 郭瑞波, 孟阳. 高血压基底节区脑出血治疗中超早期经外侧裂入路对免疫功能的影响[J]. 武警医学, 2016, 27(9): 881-883. |
[14] |
陈永增, 孙晓楠, 黄先勇, 曾强, 蔡君燕. 高血压患者白细胞内源性硫化氢与糖脂代谢指标的关系[J]. 武警医学, 2016, 27(9): 913-916. |
[15] |
刘国栋,崔凤启,王守利,闫立民. 老年高血压脑大量出血两种手术疗效比较[J]. 武警医学, 2016, 27(7): 710-713. |
|
|
|