|
|
慢性肾脏病骨矿物质代谢紊乱FGF23的血管钙化机制 |
朱冬燕1,陈 向1,曹亚南2,魏雅娟2综述,任永强2审校 |
100141,武警北京总队第三医院:1.内一科, 2.门诊部 |
|
[1] |
Go A S, Glenn M. Chronic kidney disease and the risk of death, cardiovascular events, and hospitalization [J]. N Engl J Med, 2004, 351(13): 1296-1305.
|
[2] |
Foley R N, Parfrey P S, Sarnak M J. Clinical epidemiology of cardiovascular disease in chronic renal disease [J]. Am J Kidney Dis, 2005, 101(3):112-119.
|
[3] |
Wanner C, Krane W, Mrz W, et al. Atrovastatin in patients with type 2 diabetes mellitus undergoing hemodialysis [J]. N Engl J Med, 2005, 353(2): 238-248.
|
[4] |
Evenepoel P, Meijers B, Viaene L, et al. Fibroblast growth factor-23 in early chronic kidney disease: additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism [J]. Clin J Am Soc Nephrol, 2010, 5(7): 1268-1276.
|
[5] |
Isakova T, Wahl P, Vargas G S, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease [J]. Kidney Int, 2011, 79(12): 1370-1378.
|
[6] |
Kendrick J, Cheung A K, Kaufman J S, et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic chronic dialysis [J]. J Am Soc Nephrol, 2011, 22(10): 1913-1922.
|
[7] |
Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis [J]. J Bone Miner Res, 2004, 19: 429-435.[
|
[8] |
] Eswarakumar Y P, Lax I, Schlissinger J. Cellular signaling by fibroblast growth factor receptor [J]. Cytokine and Growth Factor Reviews, 2005, 16(2): 139-149.[
|
[9] |
] Yu X, Ibrahimi O A, Goetz R, et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23 [J]. Endocrinology, 2005, 146(11): 4647-4656.
|
[10] |
Yamazaki M, Ozono K, Okada T, et al. Both FGF23 and extracellular phosphate active Raf/MEK/ERK pathway via FGF receptors in HEK293 cells [J]. Journal of Cellular Biochemistry, 2010, 111(5): 1210-1221.
|
[11] |
Nitta K, Nagano N, Tsuchiya K. Fibroblast growth factor23/Klotho axis in chronic kidney disease [J]. Nephron Clin Pract, 2014, 128(1): 1-10.
|
[12] |
Shimada T, Kakitani M, Yamaaki Y, et al. Targeted ablation of FGF23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism [J]. Journal of Clinical Investigation, 2004, 113(4): 561-568.
|
[13] |
Takaiwa K, Nagano N, Nitta K. Klotho/FGF23 Axis in CKD [J]. Contrib Nephrol, 2015, 185: 56-65.
|
[14] |
Komaba H, Fukagawa M. FGF23-parathyroid interaction: implications in chronic kidney disease [J]. Kidney Int, 2010, 77(4): 292-298.
|
[15] |
Ben-Dov I Z, Galitzer H, Lavi-Moshayoff T, et al. The parathyroid is a target organ for FGF23 in rats [J]. Joural of Clinical Investigation, 2007, 117(12): 4003-4008.
|
[16] |
Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease [J]. JAMA, 2011, 305 (23): 2432-2439.
|
[17] |
Hofman-Bang J, Martuseviciene G, Santini M A, et al. Increased parathyroid expression of Klotho in uremic rats [J]. Kidney Int, 2010, 78(11): 1119-1127.
|
[18] |
白 冰, 王彩丽,吕 丽,等. 慢性肾脏病患者血管钙化与成纤维细胞生长因子23-Klotho轴的关系 [J]. 国际移植与血液净化杂志, 2017,15(2): 17-22.
|
[19] |
Quarles L D. Role of FGF23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease [J]. Exp Cell Res, 2012, 318(9): 1040-1048.
|
[20] |
Tsuchiya K, Nagano N, Nitta K. Klotho/FGF23 Axis in CKD [J]. Contrib Nephrol, 2015, 185: 56-65.
|
[21] |
Hasegawa H, Nagano N, Urakawa, I, et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease [J]. Kidney Int, 2010, 78(10): 975-980.
|
[22] |
Shanahan C M, Crouthamel M H, Kapustin A, et al. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate [J]. Circulation Research, 2011, 109(6): 697-711.
|
[23] |
Adeney K L, Siscovick D S, Ix J H, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD [J]. Journal of the American Society of Nephrology, 2009, 20(1): 381-387.
|
[24] |
Li X, Yang H.-Y, Mckee CE, et al. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification [J]. Circulation Research, 2009, 104(6):733-741.
|
[25] |
Speer M Y, Yang H Y, Brabb T, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries [J]. Circulation Research, 2009, 104(6): 733-741.
|
[26] |
Villa-Bellosta R, Bogaert Y E, Levi M, et al. Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification [J]. Arteriosclerosis Thrombosis and Vascular Biology, 2007, 27(5): 1030-1036.
|
[27] |
Isakova T, Wahl P, Vargas G S, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease [J]. Kidney Int, 2011, 79: 1370-1378.
|
[28] |
Lee X Y, Ng H Y, Chiu T T, et al. Association of bone-derived biomarkers with vascular calcification in chronic hemodialysis patients [J]. Clin Clim Acta, 2016, 452(15): 38-43.
|
[29] |
Zhang M, Yan J, Zhu M, et al. Fibroblast growth factor 23 predicts coronary calcification and poor prognosis in patients with chronic kidney disease stages 3-5D [J]. Ann Clin Lab Sci, 2015, 45:17-22.
|
[30] |
Raggi P, Bellasi A, Gamboa C, et al. All-cause mortality in hemodialysis patients with heart valve calcification [J]. Clin J Am Soc Nephrol, 2011, 6: 1991-1995.
|
[31] |
Silva A P, Gundlach K, Büchel J, et al. Low magnesium levels and FGF23 dysregulation predict mitral valve calcification as well as intima media thickness in predialysis diabetic patients [J]. Int J Endocrinol, 2015, 2015: Article ID: 308190.
|
[32] |
王晓鸿, 吕宝军, 熊重祥, 等. 血液透析患者血浆FGF23水平与颈动脉粥样硬化关系的研究 [J]. 中国中西医结合肾病杂志,2011, 12(4): 321-323.
|
[33] |
Desjardins L, Liabeuf S, Renard C, et al. FGF23 is independently acciated with vascular calcification but not bone mineral density inpatients at various CKD stages [J]. Osteoporos Int, 2012, 23(7): 2017-2025.
|
[34] |
Sapir-Korren R, Livshits G. Bone mineralization in regulated by signaling cross talk between molecular factors of local and systemic origin: The role of fibroblast growth factor 23 [J]. Biofactors, 2014, 40(6): 555-568.
|
[35] |
Faul C, Anlaral A P, Oskouei B, et al. FGF23 induces left ventricular hypertrophy [J]. J Clin invest, 2011, 121(11):N4393-4408.
|
[36] |
Negri A L. Fibroblast growth factor 23:Associations with cardiovascular disease and mortality in chronic kidney disease [J]. Int Urol Nephrol, 2014, 46(1): 9-17.
|
[37] |
Di Marco G S, Renter S, Kentrup D, et al. Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blocked in an animal model of CKD [J]. Nephrol Dial Transplant, 2014, 29(1): 2028-2035.
|
[1] |
解龙辉,王淑芳,赵建荣,董毅. 螺内酯在改善血液透析患者心血管功能中的作用[J]. 武警医学, 2019, 30(8): 687-689. |
[2] |
霍延红, 张鑫, 张文博, 王慧, 李浩. 碳酸司维拉姆治疗维持性透析患者高磷血症的有效性和安全性[J]. 武警医学, 2019, 30(1): 58-61. |
[3] |
朱冬燕, 陈向, 曹亚南 综述, 呼建民 审校. 骨转换生物标志物在慢性肾脏病-矿物质和骨代谢紊乱中的研究进展[J]. 武警医学, 2018, 29(8): 826-830. |
[4] |
王涛综述, 王群锁审校. 血红素氧合酶1与肾缺血再灌注损伤的研究进展[J]. 武警医学, 2018, 29(3): 311-314. |
[5] |
白 洁,王淑芳,郑丽莉,温永青. 不同血液净化方式对肾性骨病相关因素的影响[J]. 武警医学, 2017, 28(6): 545-548. |
[6] |
孙波,田红霞,李晟,王月娥,荆忱,王军. 氨基末端脑钠肽水平与老年血液透析合并心力衰竭死亡的相关性[J]. 武警医学, 2016, 27(11): 1113-1116. |
[7] |
于 华,王 京,刘建春. 静脉注射左卡尼汀对维持性血液透析患者脂代谢的影响[J]. 武警医学, 2016, 27(6): 613-614. |
[8] |
孙波,刘玉华,李晟,闫国强,孙岩,陈杰,王月娥. 氨基末端脑钠肽对老年血液透析合并充血性心力衰竭的心功能诊断分级的判断价值[J]. , 0, (): 566-569. |
[9] |
孙波,刘玉华,李晟,闫国强,孙岩,陈杰,王月娥. 氨基末端脑钠肽对老年血液透析合并充血性心力衰竭的心功能诊断分级的判断价值[J]. , 2014, 25(6): 566-569. |
[10] |
安书强,杨 倩,崔 玲,史长生,贾晓娟,魏雅娟. 无肝素序贯血液透析改善尿毒症合并脑出血的疗效观察[J]. , 2014, 25(2): 176-178. |
[11] |
罗 凯,汪贤聪,彭 梅. 不合理用药致急性肾衰竭2例[J]. , 2014, 25(2): 196-197. |
[12] |
张建荣,孙振学,邵素荣,耿燕秋. 成纤维细胞生长因子受体-1与Klotho蛋白在慢性肾衰竭继发性甲状旁腺功能亢进症甲状旁腺组织中的表达[J]. , 2013, 24(12): 1043-1046 . |
[13] |
张建荣 综述 李冀军 审校. 慢性肾衰竭继发性甲状旁腺功能亢进患者微炎性反应状态研究进展[J]. 武警医学, 2013, 24(5): 435-437. |
[14] |
罗 凯,汪贤聪. 行军性横纹肌溶解综合征并发急性肾衰竭1例[J]. , 2012, 23(12): 1088-1088. |
[15] |
任改瑛,蔺素萍,李耀丽. 机器法结肠透析治疗慢性肾衰竭88例[J]. 武警医学, 2012, 23(8): 709-709. |
|
|
|
|