摘要目的 观察和评估2型糖尿病合并阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)患者使用持续气道正压通气(continuous positive airway pressure,CPAP)治疗16周后临床疗效的变化。方法 选取2012-01至2017-06于煤炭总医院内分泌科确诊2型糖尿病合并有OSAHS的患者60例,随机分配到A组(降糖药物联合无创呼吸机)、B组(单纯使用降糖药物),每组30例。降糖治疗方式不限。并根据血糖检测值来调整降糖治疗方案,直到血糖达标。呼吸机每日佩戴不少于6 h,随访16周。比较两组患者空腹血糖(FPG)、餐后2 h血糖(2 h PPG)、胰岛素抵抗指数(HOMA-IR)、胰岛β细胞功能(HOME-β)、糖化血红蛋白(Hb1Ac)达标的时间以及血脂四项、呼吸暂停低通气指数(apnea-hypopnea index,AHI) 、最低脉搏容积血氧饱和度(minimum pulse volume oxygen saturation, LSp O2%)、生活质量及对治疗满意度等变化情况。结果 两组患者血糖均得到良好控制,FPG: A组(6.10±0.32) mmol/L vs B组(6.92±1.61 )mmol/L, 2hPPG:A组(8.23±3.12 )mmol/L vs B组(8.91±2.81) mmol/L, Hb1Ac%:A组6.38±0.32 vs B组 6.50±1.12, TC:A组(4.41±1.22) mmol/L vs B组(4.52±1.35) mmol/L; TG:A组(1.43±0.34 )mmol/L vs B组(1.50±0.62 )mmol/L,LDL-C: A组(2.50±0.42 )mmol/L vs B组(2.63±0.63 )mmol/L,HDL-C:A组(1.28±0.58) mmol/L vs B组(1.18±0.45) mmol/L,两组差异无统计学意义 (P>0. 05) 。 A组HOMA-IR较 B 组降低(2.01±1.22 vs 3.92±1.61,P<0.001),A组的HOMA-β较 B组有改善(164.23±60.52 vs 104.91±52.81),AHI(4.31±1.20 vs 31.62±8.35),LSp O2%(95.43±3.34 vs 89.50±4.62)(P<0.001)。A组指尖血糖达标所需时间短于B组[(7.01±1.02)d vs (10.12±1.42)d],问卷调查患者的生活质量(98% vs 62%)及对治疗的满意度提高(100% vs 52%)(P<0.05)。结论 对2型糖尿病合并OSAHS患者进行CPAP治疗,可以改善胰岛素抵抗,恢复胰岛细胞功能,缩短血糖达标所需时间,提高患者的生活质量及对治疗的满意度,是安全有效、简便可行的。
Abstract:Objective To observe and evaluate the clinical efficacy of sixteen-weeks of continuous positive airway pressure (CPAP) in patients with type 2 diabetes complicated with obstructive sleep apnea-hypopnea syndrome (OSAHS).Methods Sixty patients with type 2 diabetes and OSAHS who had been diagnosed in the Department of Endocrinology in China Meitan General Hospital between January 2012 and June 2017 were randomly selected and assigned to the experimental group A (hypoglycemic drugs combined with the non-invasive ventilator) and control group B (hypoglycemic drugs), with 30 cases in each. Ways hyperglycemia was treated depended on the blood sugar value until blood sugar became normal. Patients on ventilation used the ventilator for a minimum of 6 hours a day for 16 weeks. The fasting blood glucose (FPG), postprandial blood glucose (2-hour PPG), insulin resistance index (HOMA-IR), islet β-cell function (HOME-β), glycated hemoglobin (Hb1Ac), four items of blood lipids, apnea-hypopnea index (AHI), minimum pulse volume oxygen saturation (LSp O2%), quality of life, and levels of satisfaction with treatment were compared between the two groups.Results The blood glucose levels of the two groups were well controlled [(FBG:Group A (6.10±0.32) mmol/L vs Group B (6.92±1.61) mmol/L;PPG: Group A (8.23±3.12) mmol/L vs Group B (8.91±2.81) mmol/L]. The difference in glycosylated hemoglobin (Hb1Ac:6.38±0.32 vs 6.50±1.12). The four items of blood lipids [TC:(4.41±1.22) mmol/L vs (4.52±1.35) mmol/L;TG:(1.43±0.34) mmol/L vs (1.50±0.62) mmol/L;LDL-C: (2.50±0.42) mmol/L vs (2.63±0.63) mmol/L;HDL-C:(1.28±0.58) mmol/L vs (1.18±0.45 mmol/L)]was not statistically significant (P>0.05). HOMA-IR of group A was lower than that of group B (2.01±1.22 vs 3.92±1.61,P<0.001). HOMA-β(164.23±60.52 vs 104.91±52.81), AHI(4.31±1.20 vs 31.62±8.35), and LSp O2% (95.43±3.34 vs 89.50±4.62)of group A were improved compared with group B (P<0.001). Blood glucose took less time to become normal in group than in group B(7.01±1.02 vs 10.12±1.42). The quality of life(98% vs 62%)and levels of satisfaction with treatment(100% vs 52%)(P<0.05) were higher in group A than in group B according to the survey.Conclusions The CPAP treatment of patients with type 2 diabetes complicated with OSAHS is effective, safe and feasible. It can improve insulin resistance, restore islet cell function, help blood glucose to become normal quickly, and improve the patients’ quality of life and satisfaction with treatment.
李洪梅, 韩旸, 王凯亮. 2型糖尿病合并阻塞性睡眠呼吸暂停低通气综合征持续气道正压通气疗效[J]. 武警医学, 2019, 30(10): 849-852.
LI Hongmei, HAN Yang, and WANG Kailiang. Efficacy of CPAP in treating patients with type 2 diabetes and OSAHS. Med. J. Chin. Peop. Armed Poli. Forc., 2019, 30(10): 849-852.
Babu A R, Herdegen J, Fogelfeld L, et al. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea[J]. Arch Intern Med, 2005,165(4):447-452.
[6]
Hassaballa H A, Tulaimat A, Herdegen J J, et al. The effect of continuous positive airway pressure on glucose control in diabetic patients with severe obstructive sleep apnea[J]. Sleep Breath, 2005,9(4):176-180.
Azman M, Sani A, Kamaruddin N A. Insulin resistance using HOMA model in obstructive sleep apnea: a cross sectional study[J]. Ann Saudi Med, 2014,34(6):476-481.
Yang D, Liu Z, Yang H, et al. Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis[J]. Sleep Breath, 2013,17(1):33-38.
[12]
Briancon-Marjollet A, Weiszenstein M, Henri M, et al. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms[J]. Diabetol Metab Syndr, 2015,7:25.
[13]
Morgenstern M, Wang J, Beatty N, et al. Obstructive sleep apnea: an unexpected cause of insulin resistance and diabetes[J]. Endocrinol Metab Clin North Am, 2014,43(1):187-204.