Bray F, Ferlay J, Soerjomataram I, et al .Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
Chen W Q,Zheng R S,Baade P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[3]
Dong Y, Feng Q, Yang W,et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(2): 582-591.
[4]
Wang Jun, Liu Xia, Dong Di, et al. Prediction of malignant and benign of lung tumor using a quantitative radiomic method[C]// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, 2016: 1272-1275.
[5]
Grootjans W, Tixier F, van der Vos C S, et al. The impact of optimal respiratory gating and image noise on evaluation of intratum or heterogeneity on 18F-FDG PET imaging of lung cancer[J]. J Nucl Med, 2016, 57(11): 1692-1698.
[6]
Hatt M, Tixier F, Pierce L, et al. Characterization of PET/CT images using texture analysis: the past, the present any future?[J]. Eur J Nucl Med Mol Imaging, 2017, 44(1): 151-165.
[7]
Gnep K,Fargeas A,Gutierrez-Carvajal R E,et al.Haralick texturalfeatures on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer[J].J Magn Reson Imaging, 2017, 45(1): 103-117.
Yang L, Dong D, Fang M, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?[J]. Eur Radiol, 2018, 28(5): 2058-2067.
Liang C S, Huang Y Q, He L, et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stageⅠ-Ⅱand stageⅢ-Ⅳcolorectal cancer[J]. Oncotarget, 2016, 7(21): 31401-31412.
[14]
Liu L, Liu Y, Xu L, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer [J]. J Magn Reson Imaging, 2017, 45(6): 1798-1808.
[15]
Huang Y Q, Liang C H, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol, 2016, 34(18): 2157-2164.
[16]
Manfredi S, Lepage C M, Hatem C, et al. Epidemiology and management of liver metastases fromcolorectal cancer [J]. Ann Surg, 2006, 244(2): 254-259.
Ke N, Shi L M, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI[J]. J Clin Oncol, 2016, 22(21): 5256-5264.
[20]
Liu Z Y, Zhang X Y, Shi Y J, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. J Clin Oncol, 2017, 23(23): 7253-7262.
[21]
Liu M, Lv H, Liu L H, et al. Locally advanced rectal cancer: predicting non-responders to neoadjuvant chemoradiotherapy using apparent diffusion coefficient textures[J]. Int J Colorectal Dis, 2017, 32(7): 1009-1012.
[22]
Enkhbaatar N E, Inoue S, Yamamuro H, et al. MR imaging with apparent diffusion coefficient histogram analysis: evaluation of locally advanced rectal cancer after chemotherapy and radiation therapy[J]. Radiology, 2018, 288(1): 129-137.
[23]
Chen P J, Lin M C, Lai M J, et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis[J]. Gastroenterology, 2018, 154(3): 568-575.
[24]
Xu Y, Jia Z P, Wang L B, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features [J]. BMC Bioinformatics, 2017, 18(1): 281-298.