Effect of Apelin-13 on osteoblast differentiation and mitochondrial respiration function of BMSCs derived from GK diabetic rats
LI Meng1, LI Shuang2, ZHANG Xinran3, ZHU Biao2, ZHENG Xue2, WANG Jian1
1. Department of Stomatology, Characteristics Medical Center of PLA Strategic Support Force, Beijing 100101, China; 2. Department of Stomatology, Fuxing Hospital Affiliated to Capital Medical University, Beijing 100038, China; 3. Department of Stomatology, Xuanwu Hospital Affiliated to Capital Medical University, Beijing 100053, China
Abstract:Objective To investigate the effect of Apelin-13 on osteoblast differentiation and mitochondrial respiration function of BMSCs derived from GK diabetic rats. Methods The BMSCs of GK diabetic rats were extracted. After cultured in osteogenic differentiation medium, the activity of alkaline phosphatase (ALP) was detected. Von Kossa staining was used to evaluate calcium nodules formation, and the mitochondrial respiratory function under different states was determined by O2K mitochondrial respiration apparatus. Results Apelin-13 enhanced the ALP activity of BMSCs in GK diabetic rats, and promoted calcium nodules mineralization. Compared with the GK group, Apelin-13 effectively improved mitochondrial respiratory function in two states: complex I state 3 respiration (16.1±1.8) vs. (5.6±0.9)] pmol/(s×ml) and complex Ⅰ+ complex Ⅱ state 3 respiration[(71.1±8.6) vs. (49.0±4.8)] pmol/(s×ml). Conclusions Apelin-13 can promote osteoblast differentiation and enhance mitochondrial respiration function of BMSCs derived from GK diabetic rats.
李梦, 李爽, 张欣然, 朱彪, 郑雪, 王坚. 爱帕琳肽13对GK大鼠BMSCs骨向分化及线粒体呼吸功能的影响[J]. 武警医学, 2024, 35(5): 395-398.
LI Meng, LI Shuang, ZHANG Xinran, ZHU Biao, ZHENG Xue, WANG Jian. Effect of Apelin-13 on osteoblast differentiation and mitochondrial respiration function of BMSCs derived from GK diabetic rats. Med. J. Chin. Peop. Armed Poli. Forc., 2024, 35(5): 395-398.
Liu B, Gan X, Zhao Y, et al. Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions[J]. J Physiol Biochem, 2021,77(2):227-235.
[3]
Liu B, Gan X, Zhao Y, et al. Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions[J]. J Physiol Biochem, 2021,77(2):227-235.
[4]
Hang K, Ye C, Xu J, et al. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway[J]. Stem Cell Res Ther, 2019,10(1):189.
[4]
Hang K, Ye C, Xu J, et al. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway[J]. Stem Cell Res Ther, 2019,10(1):189.
[5]
Gourdy P, Cazals L, Thalamas C, et al. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp[J]. Diabetes Obes Metab, 2018,20(1):157-164.
[5]
Gourdy P, Cazals L, Thalamas C, et al. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp[J]. Diabetes Obes Metab, 2018,20(1):157-164.
[6]
O′Harte F, Parthsarathy V, Hogg C, et al. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions[J]. Peptides, 2018,100:219-228.
[6]
O′Harte F, Parthsarathy V, Hogg C, et al. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions[J]. Peptides, 2018,100:219-228.
[7]
Feng J, Zhao H, Du M, et al. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats[J]. Peptides, 2019,114:1-7.
[7]
Feng J, Zhao H, Du M, et al. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats[J]. Peptides, 2019,114:1-7.
[8]
Chen L, Shi X, Xie J, et al. Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway[J]. Free Radic Biol Med, 2021,163:356-368.
[8]
Chen L, Shi X, Xie J, et al. Apelin-13 induces mitophagy in bone marrow mesenchymal stem cells to suppress intracellular oxidative stress and ameliorate osteoporosis by activation of AMPK signaling pathway[J]. Free Radic Biol Med, 2021,163:356-368.
Zhu B, Li Y, Xiang L, et al. Alogliptin improves survival and health of mice on a high-fat diet[J]. Aging Cell, 2019,18(2):e12883.
[10]
Zhu B, Li Y, Xiang L, et al. Alogliptin improves survival and health of mice on a high-fat diet[J]. Aging Cell, 2019,18(2):e12883.
[11]
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine[J]. Nat Med, 2016,22(12):1428-1438.
[11]
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine[J]. Nat Med, 2016,22(12):1428-1438.
[12]
Castan-Laurell I, El B R, Pereira O, et al. Plasma apelin and risk of type 2 diabetes in a Cohort from the community[J]. Diabetes Care, 2020,43(2):e15-e16.
[12]
Castan-Laurell I, El B R, Pereira O, et al. Plasma apelin and risk of type 2 diabetes in a Cohort from the community[J]. Diabetes Care, 2020,43(2):e15-e16.
[13]
Chen G, Liang X, Han Q, et al. Apelin-13 pretreatment promotes the cardioprotective effect of mesenchymal stem cells against myocardial infarction by improving their survival[J]. Stem Cells Int, 2022,2022:3742678.
[13]
Chen G, Liang X, Han Q, et al. Apelin-13 pretreatment promotes the cardioprotective effect of mesenchymal stem cells against myocardial infarction by improving their survival[J]. Stem Cells Int, 2022,2022:3742678.
[14]
Wang H, Cong L, Yin X, et al. The Apelin-APJ axis alleviates LPS-induced pulmonary fibrosis and endothelial mesenchymal transformation in mice by promoting Angiotensin-Converting Enzyme 2[J]. Cell Signal, 2022,98:110418.
[14]
Wang H, Cong L, Yin X, et al. The Apelin-APJ axis alleviates LPS-induced pulmonary fibrosis and endothelial mesenchymal transformation in mice by promoting Angiotensin-Converting Enzyme 2[J]. Cell Signal, 2022,98:110418.
[15]
Enoki Y, Nagai T, Hamamura Y, et al. The G protein-coupled receptor ligand apelin-13 ameliorates skeletal muscle atrophy induced by chronic kidney disease[J]. J Cachexia Sarcopenia Muscle, 2023,14(1):553-564.
[15]
Enoki Y, Nagai T, Hamamura Y, et al. The G protein-coupled receptor ligand apelin-13 ameliorates skeletal muscle atrophy induced by chronic kidney disease[J]. J Cachexia Sarcopenia Muscle, 2023,14(1):553-564.
[16]
Peng Y, Jingming R, Shaowen C, et al. The protective effect of Apelin-13 against cardiac hypertrophy through activating the PI3K-AKT-mTOR signaling pathway[J]. Iran J Basic Med Sci, 2023,26(2):183-189.
[16]
Peng Y, Jingming R, Shaowen C, et al. The protective effect of Apelin-13 against cardiac hypertrophy through activating the PI3K-AKT-mTOR signaling pathway[J]. Iran J Basic Med Sci, 2023,26(2):183-189.
[17]
Zhang P, Wang A P, Yang H P, et al. Apelin-13 attenuates high glucose-induced calcification of MOVAS cells by regulating MAPKs and PI3K/AKT pathways and ROS-mediated signals[J]. Biomed Pharmacother, 2020,128:110271.
[17]
Zhang P, Wang A P, Yang H P, et al. Apelin-13 attenuates high glucose-induced calcification of MOVAS cells by regulating MAPKs and PI3K/AKT pathways and ROS-mediated signals[J]. Biomed Pharmacother, 2020,128:110271.
[18]
Zhu B, Mei W, Jiao T, et al. Neuregulin 4 alleviates hepatic steatosis via activating AMPK/mTOR-mediated autophagy in aged mice fed a high fat diet[J]. Eur J Pharmacol, 2020,884:173350.
[18]
Zhu B, Mei W, Jiao T, et al. Neuregulin 4 alleviates hepatic steatosis via activating AMPK/mTOR-mediated autophagy in aged mice fed a high fat diet[J]. Eur J Pharmacol, 2020,884:173350.
[19]
Upadhyay J, Farr O M, Mantzoros C S. The role of leptin in regulating bone metabolism[J]. Metabolism, 2015,64(1):105-113.
[19]
Upadhyay J, Farr O M, Mantzoros C S. The role of leptin in regulating bone metabolism[J]. Metabolism, 2015,64(1):105-113.
[20]
Habiballa L, Salmonowicz H, Passos J F. Mitochondria and cellular senescence: implications for musculoskeletal ageing[J]. Free Radic Biol Med, 2019,132:3-10.
[21]
Shen Y, Wu L, Qin D, et al. Carbon black suppresses the osteogenesis of mesenchymal stem cells: the role of mitochondria[J]. Part Fibre Toxicol, 2018,15(1):16.
[20]
Habiballa L, Salmonowicz H, Passos J F. Mitochondria and cellular senescence: implications for musculoskeletal ageing[J]. Free Radic Biol Med, 2019,132:3-10.
[22]
张龙飞. 红景天苷对力竭大鼠心肌线粒体呼吸功能的影响[D]. 石家庄: 河北医科大学, 2014.
[21]
Shen Y, Wu L, Qin D, et al. Carbon black suppresses the osteogenesis of mesenchymal stem cells: the role of mitochondria[J]. Part Fibre Toxicol, 2018,15(1):16.
[23]
Ma J, Wang Z, Zhao J, et al. Resveratrol attenuates lipopolysaccharides (LPS)-induced inhibition of osteoblast differentiation in MC3T3-E1 cells[J]. Med Sci Monit, 2018,24:2045-2052.
[22]
张龙飞. 红景天苷对力竭大鼠心肌线粒体呼吸功能的影响[D]. 石家庄: 河北医科大学, 2014.
[23]
Ma J, Wang Z, Zhao J, et al. Resveratrol attenuates lipopolysaccharides (LPS)-induced inhibition of osteoblast differentiation in MC3T3-E1 cells[J]. Med Sci Monit, 2018,24:2045-2052.