Cooper-Dehoff R M, Johnson J A. Hypertension pharmacogenomics: in search of personalized treatment approaches [J]. Nat Rev Nephrol, 2016, 12(2): 110-122.
[2]
Johnson J A. Advancing management of hypertension through pharmacogenomics [J]. Ann Med, 2012, 44(1): 17-22.
[3]
Chen L, Xiao T, Chen L, et al. The association of ADRB1 and CYP2D6 polymorphisms with antihypertensive effects and analysis of their contribution to hypertension risk [J]. Am J Med Sci, 2018, 355(3): 235-239.
[4]
Manosroi W, Williams G H. Genetics of human primary hypertension: focus on hormonal mechanisms [J]. Endocr Rev, 2019, 40(3): 825-856.
[5]
Padmanabhan S, Dominiczak A F. Genomics of hypertension: the road to precision medicine [J]. Nat Rev Cardiol, 2021, 18(4): 235-250.
Chen K, Li Y, Yang C, et al. CYP2D6 and ADRB1 genetic polymorphisms and the selection of antihypertensive beta-receptor blockers for hypertensive patients [J]. Am J Cardiovasc Dis, 2023, 13(4): 264.
[8]
Byeon J Y, Kim Y H, Lee C M, et al. CYP2D6 allele frequencies in Korean population, comparison with East Asian, Caucasian and African populations, and the comparison of metabolic activity of CYP2D6 genotypes [J]. Arch Pharm Res, 2018, 41: 921-930.
[9]
Oldham H G, Clarke S E. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R (+)-and S (-)-carvedilol [J]. Drug Metab Dispos, 1997, 25(8): 970-977.
[10]
Eadon M T, Chapman A B. A physiologic approach to the pharmacogenomics of hypertension [J]. Adv Chronic Kidney D, 2016, 23(2): 91-105.
[11]
Hwang S, Lee S, Yoon J, et al. Population pharmacokinetic-pharmacodynamic modeling of carvedilol to evaluate the effect of cytochrome P450 2D6 genotype on the heart rate reduction [J]. J Korean Med Sci, 2023, 38(22): e173.
[12]
Jung E, Ryu S, Park Z, et al. Influence of CYP2D6 polymorphism on the pharmacokinetic/pharmacodynamic characteristics of carvedilol in healthy Korean volunteers [J]. J Korean Med Sci, 2018, 33(27): e182.
[13]
Chen K, Xiao P, Li G, et al. Distributive characteristics of the CYP2C9 and AGTR1 genetic polymorphisms in Han Chinese hypertensive patients: a retrospective study [J]. BMC Cardiovasc Disord, 2021, 21(1): 1-6.
[14]
Babaoglu M O, Yasar U, Sandberg M, et al. CYP2C9 genetic variants and losartan oxidation in a Turkish population [J]. Eur J Clin Pharmacol, 2004, 60: 337-342.
[15]
Hong X, Zhang S, Mao G, et al. CYP2C9* 3 allelic variant is associated with metabolism of irbesartan in Chinese population [J]. Eur J Clin Pharmacol, 2005, 61: 627-634.
[16]
Zuo X C, Zhang W L, Yuan H, et al. ABCB1 polymorphism and gender affect the pharmacokinetics of amlodipine in Chinese patients with essential hypertension: a population analysis [J]. Drug Metab Pharmacokinet, 2014, 29(4): 305-311.
[17]
Huang Y, Liu X L, Wen J, et al. Downregulation of the β1 adrenergic receptor in the myocardium results in insensitivity to metoprolol and reduces blood pressure in spontaneously hypertensive rats [J]. Mol Med Rep, 2017, 15(2): 703-711.
Johnson J A, Zineh I, Puckett B J, et al. β1-Adrenergic receptor polymorphisms and antihypertensive response to metoprolol [J]. Clin Pharmacol Ther, 2003, 74(1): 44-52.
[20]
Guerra L A, Lteif C, Arwood M J, et al. Genetic polymorphisms in ADRB2 and ADRB1 are associated with differential survival in heart failure patients taking β-blockers [J]. Pharmacogenomics J, 2022, 22(1): 62-68.
[21]
Dong H, Wang F Z, Shi K, et al. Association of cytochrome P450 2C9* 3 and angiotensin II receptor 1 (1166A> C) gene polymorphisms with the antihypertensive effect of irbesartan [J]. Am J Hypertens, 2021, 34(1): 121.
Li Z Y, Ma Q, Li X, et al. Association of AGTR1 gene methylation and its genetic variant in Chinese farmer with hypertension: a case-control study [J]. Medicine, 2022, 101: e29712.
[24]
Zeng Y, Jiang Y, Huang Z, et al. Association between AGTR1 (c. 1166 A> C) polymorphisms and kidney injury in hypertension [J]. Front Biosci-Landmark, 2023, 28(7): 146.
[25]
Civieri G, Iop L, Tona F. Antibodies against angiotensin II type 1 and endothelin 1 type A receptors in cardiovascular pathologies [J]. Int J Mol Sci, 2022, 23(2): 927.
[26]
Melake A, Brhanie N. Association between ACE I/D gene polymorphism and dyslipidemia in hypertensive patients with ischemic heart disease complication among Ethiopian population [J]. Res Rep Clin Cardiol, 2023, 14: 1-8.
[27]
Patel D D, Parchwani D N, Dikshit N, et al. Analysis of the pattern, alliance and risk of rs1799752 (ACE I/D polymorphism) with essential hypertension [J]. Ind J Clin Biochem, 2022, 37: 18-28.
[28]
Kumari N, Yadav A, Ahirwar R, et al. Angiotensin converting enzyme (ACE) insertion/deletion (I/D) polymorphism and its association with cardiovascular adversities-A systematic review [J]. Hum Gene, 2022, 34: 201117.
[29]
Baudin B. Angiotensin I-converting enzyme gene polymorphism and drug response [J]. Clin Chem Lab Med, 2000, 38(9): 853-856.
[30]
Agerholm-Larsen B, Nordestgaard B G, Tybjærg-Hansen A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites [J]. Arterioscler Thromb Vasc Biol, 2000, 20(2): 484-492.
Liang H, Zhang X, Ma Z, et al. Association of CYP3A5 gene polymorphisms and amlodipine-induced peripheral edema in chinese han patients with essential hypertension [J]. Pharmacogenomics Pers Med, 2021, 14: 189-197.
[36]
刘 翔. 基因检测在老年难治性高血压个体化治疗中的应用 [D]. 芜湖: 皖南医学院, 2023.
[37]
Kelley E F, Snyder E M, Alkhatib N S, et al. Economic evaluation of a pharmacogenomic multi-gene panel test to optimize anti-hypertension therapy: simulation study [J]. J Med Econ, 2018, 21(12): 1246-1253.
Berm E J, Looff M d, Wilffert B, et al. Economic evaluations of pharmacogenetic and pharmacogenomic screening tests: a systematic review. Second update of the literature [J]. PLoS One, 2016, 11(1): e0146262.