Diermeier T A, Rothrauff B B, Engebretsen L, et al. Treatment after ACL injury: panther symposium ACL treatment consensus group[J]. Br J Sports Med, 2021,55(1):14-22.
[2]
Jarraya M, Guermazi A, Roemer F W. Osteoarthritis year in review 2023: Imaging[J]. Osteoarthritis Cartilage, 2024,32(1):18-27.
[3]
Brophy R H, Lowry K J. American academy of orthopaedic surgeons clinical practice guideline summary: management of anterior cruciate ligament injuries[J]. J Am Acad Orthop Surg, 2023,31(11):531-537.
[4]
Kochman M, Kasprzak M, Kielar A. ACL reconstruction: Which additional physiotherapy interventions improve early-stage rehabilitation? A Systematic Review[J]. Int J Environ Res Public Health, 2022,19(23):15893.
[5]
Culvenor A G, Girdwood M A, Juhl C B, et al. Rehabilitation after anterior cruciate ligament and meniscal injuries: a best-evidence synthesis of systematic reviews for the OPTIKNEE consensus[J]. Br J Sports Med, 2022,56(24):1445-1453.
[6]
Buckthorpe M, Gokeler A, Herrington L, et al. Optimising the early-stage rehabilitation process Post-ACL reconstruction[J]. Sports Med, 2024,54(1):49-72.
[7]
Ferretti A, Carrozzo A, Saithna A, et al. Comparison of primary repair of the anterior cruciate ligament and anterolateral structures to reconstruction and lateral extra-articular tenodesis at 2-Year follow-up[J]. Am J Sports Med, 2023,51(9):2300-2312.
[8]
Zhang S, Wen A, Li S, et al. Radial extracorporeal shock wave therapy enhances graft maturation at 2-Year follow-up after ACL reconstruction: a randomized controlled trial[J]. Orthop J Sports Med, 2022,10(9):23259671221116340.
[9]
Xu J, Ye Z, Han K, et al. Infrapatellar fat pad mesenchymal stromal Cell-derived exosomes accelerate Tendon-bone healing and intra-articular graft remodeling after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2022,50(3):662-673.
[10]
Li Z, Li Q, Tong K, et al. BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats[J]. Stem Cell Res Ther, 2022,13(1):295.
[11]
Ye Z, Xu J, Chen J, et al. Effect of anterolateral structure augmentation on graft maturity after anterior cruciate ligament reconstruction:a clinical and MRI follow-up of 2 years[J]. Am J Sports Med, 2022,50(7):1805-1814.
[12]
Rahim M, Ooi F K, Shihabudin M T, et al. The effects of three and six sessions of low energy extracorporeal shockwave therapy on graft incorporation and knee functions post anterior cruciate ligament reconstruction[J]. Malays Orthop J, 2022,16(1):28-39.
[13]
Benjamin M, Toumi H, Ralphs J R, et al. here tendons and ligaments meet bone: attachment sites ('entheses') in relation to exercise and/or mechanical load[J]. J Anat, 2006,208(4):471-90.
[14]
Oda T, Maeyama A, Ishimatsu T, et al. Soft tissue stabilization of the hinge position for lateral closing-wedge distal femoral osteotomy: An anatomic study[J]. Orthop J Sports Med, 2024,12(3):23259671241233014.
[15]
Soni S, Brahmbhatt V, Tolani M, et al. Functional outcomes in anterior cruciate ligament (ACL) Reconstruction: a nine-month follow-up study using lysholm score in a rural tertiary care center in India[J]. Cureus, 2024,16(2):e53480.
[16]
Moretti L, Bizzoca D, Cassano G D, et al. Graft intra-articular remodeling and bone incorporation in ACL reconstruction: the state of the art and clinical implications[J]. J Clin Med, 2022,11(22):6704.
[17]
Yau W P, Chan Y C. Evaluation of graft ligamentization by MRI after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2023,51(6):1466-1479.
[18]
Rodríguez-Merchán E C. Anterior cruciate ligament reconstruction: is biological augmentation beneficial?[J]. Int J Mol Sci, 2021,22(22):12566.
[19]
Hexter A T, Thangarajah T, Blunn G, et al. Biological augmentation of graft healing in anterior cruciate ligament reconstruction: a systematic review[J]. Bone Joint J, 2018,100-B(3):271-284.
[20]
Zhao X, Wu G, Zhang J, et al. Activation of CGRP receptor-mediated signaling promotes tendon-bone healing[J]. Sci Adv, 2024,10(10):eadg7380.
[21]
Medina C. Shockwave therapy in veterinary rehabilitation[J]. Vet Clin N Am Small, 2023,53(4):775-781.
[22]
Smallcomb M, Khandare S, Vidt M E, et al. Therapeutic ultrasound and shockwave therapy for tendinopathy: a narrative review[J]. Am J Phys Med Rehabil, 2022,101(8):801-807.
[23]
Stania M, Juras G, Chmielewska D, et al. Extracorporeal shock wave therapy for achilles tendinopathy[J]. Biomed Res Int, 2019,2019:3086910.
[24]
De la Corte-Rodríguez H, Román-Belmonte J M, Rodríguez-Damiani B A, et al. Extracorporeal shock wave therapy for the treatment of musculoskeletal pain: a narrative review[J]. Healthcare (Basel), 2023,11(21):2830.
[25]
Mansur N, Matsunaga F T, Carrazzone O L, et al. Shockwave therapy plus eccentric exercises versus isolated eccentric exercises for achilles insertional tendinopathy: a double-blinded randomized clinical trial[J]. J Bone Joint Surg Am, 2021,103(14):1295-1302.
[26]
Alvarez L. Extracorporeal shockwave therapy for musculoskeletal pathologies[J]. Vet Clin North Am Small Anim Pract, 2022,52(4):1033-1042.
[27]
Feeney K M. The effectiveness of extracorporeal shockwave therapy for midportion achilles tendinopathy: a systematic review[J]. Cureus, 2022,14(7):e26960.
[28]
Weninger P, Thallinger C, Chytilek M, et al. Extracorporeal shockwave therapy improves outcome after primary anterior cruciate ligament reconstruction with hamstring tendons[J]. J Clin Med, 2023,12(10):3350.
[29]
Haupt G, Haupt A, Ekkernkamp A, et al. Influence of shock waves on fracture healing[J]. Urology, 1992,39(6):529-532.
[30]
Wang F S, Yang K D, Chen R F, et al. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1[J]. J Bone Joint Surg Br, 2002,84(3):457-461.
[31]
Chen Q, Yang Z, Sun X, et al. Inokosterone activates the BMP2 to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and improve bone loss in ovariectomized rats[J]. Biochem Biophys Res Commun, 2023,682:349-358.
[32]
Schaden W, Fischer A, Sailler A, et al. Extracorporeal shock wave therapy of nonunion or delayed osseous union[J]. Clin Orthop Relat Res. 2001. (387): 90-94.
[33]
Wang C J. Extracorporeal shockwave therapy in musculoskeletal disorders[J]. J Orthop Surg Res, 2012,7:11.
[34]
Elster E A, Stojadinovic A, Forsberg J, et al. Extracorporeal shock wave therapy for nonunion of the tibia[J]. J Orthop Trauma, 2010,24(3):133-141.
[35]
Charles R, Fang L, Zhu R, et al. The effectiveness of shockwave therapy on patellar tendinopathy, Achilles tendinopathy, and plantar fasciitis: a systematic review and meta-analysis[J]. Front Immunol, 2023,14:1193835.
[36]
Kim K S, Choi Y S, Bae W J, et al. Efficacy of low-Intensity extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome IIIb: A prospective-randomized, double-Blind, placebo-controlled study[J]. World J Mens Health, 2022,40(3):473-480.
[37]
Guo P, Gao F, Zhao T, et al. Positive effects of extracorporeal shock wave therapy on spasticity in poststroke patients: a meta-analysis[J]. J Stroke Cerebrovasc Dis, 2017,26(11):2470-2476.
[38]
Wang C J, Wang F S, Yang K D, et al. The effect of shock wave treatment at the tendon-bone interface-an histomorphological and biomechanical study in rabbits[J]. J Orthop Res, 2005,23(2):274-280.
Vetrano M, d’Alessandro F, Torrisi M R, et al. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes[J]. Knee Surg Sports Traumatol Arthrosc, 2011,19(12):2159-2168.
[41]
Wang C J, Ko J Y, Chou W Y, et al. Shockwave therapy improves anterior cruciate ligament reconstruction[J]. J Surg Res, 2014,188(1):110-118.
[42]
Panos J A, Webster K E, Hewett T E. Anterior cruciate ligament grafts display differential maturation patterns on magnetic resonance imaging following reconstruction: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2020,28(7):2124-2138.