Li Y, Liu J, Xu Z, et al. Construction and validation of a nomogram for predicting the prognosis of patients with lymph node-positive invasive micropapillary carcinoma of the breast: based on SEER database and external validation cohort[J]. Front Oncol, 2023, 13: 1231302.
[2]
Ide Y, Horii R, Osako T, et al. Clinicopathological significance of invasive micropapillary carcinoma component in invasive breast carcinoma[J]. Pathol Int, 2011, 61(12): 731-736.
[3]
Siriaunkgul S, Tavassoli F A. Invasive micropapillary carcinoma of the breast[J]. Mod Pathol, 1993, 6(6): 660-662.
[4]
Verras G I, Tchabashvili L, Mulita F, et al. Micropapillary breast carcinoma: from molecular pathogenesis to prognosis[J]. Breast Cancer (Dove Med Press), 2022, 14: 41-61.
[5]
Tang S L, Yang J Q, Du Z G, et al. Clinicopathologic study of invasive micropapillary carcinoma of the breast[J]. Oncotarget, 2017, 8(26): 42455-42465.
[6]
Nangong J, Cheng Z, Yu L, et al. Invasive micropapillary breast carcinoma: a retrospective study on the clinical imaging features and pathologic findings[J]. Front Surg, 2022, 9: 1011773.
[7]
Zekioglu O, Erhan Y, Ciris M, et al. Invasive micropapillary carcinoma of the breast: high incidence of lymph node metastasis with extranodal extension and its immunohistochemical profile compared with invasive ductal carcinoma[J]. Histopathology, 2004, 44(1): 18-23.
Cheng L H, Yu X J, Zhang H, et al. Advances in invasive micropapillary carcinoma of the breast research: a review[J]. Medicine (Baltimore), 2024, 103(1): e36631.
[10]
Böcker W. WHO classification of breast tumors and tumors of the female genital organs: pathology and genetics[J]. Verh Dtsch Ges Pathol, 2002, 86: 116-119.
[11]
Liu J, Xi W, Zhou J, et al. Nomogram predicting overall prognosis for invasive micropapillary carcinoma of the breast: a SEER-based population study[J]. BMJ Open, 2023, 13(8): e072632.
[12]
Meng X, Ma H, Yin H, et al. Nomogram predicting the risk of locoregional recurrence after mastectomy for invasive micropapillary carcinoma of the breast[J]. Clin Breast Cancer, 2021, 21(4): e368-e376.
[13]
Yu J I, Choi D H, Huh S J, et al. Differences in prognostic factors and failure patterns between invasive micropapillary carcinoma and carcinoma with micropapillary component versus invasive ductal carcinoma of the breast: retrospective multicenter case-control study (KROG 13-06)[J]. Clin Breast Cancer, 2015, 15(5): 353-361.e351-352.
Fisher E R, Palekar A S, Redmond C, et al. Pathologic findings from the national surgical adjuvant breast project (protocol no. 4). VI. invasive papillary cancer[J]. Am J Clin Pathol, 1980, 73(3): 313-322.
[16]
Arai K, Iwasaki T, Tsuchiya C, et al. Involvement of annexin A2 expression and apoptosis in reverse polarization of invasive micropapillary carcinoma of the breast[J]. Case Rep Pathol, 2020, 2020: 9242305.
[17]
Çakır Y, Kelten Talu C, Mermut Ö, et al. The expression of galectin-3 in tumor and cancer-associated fibroblasts in invasive micropapillary breast carcinomas: relationship with clinicopathologic parameters[J]. Eur J Breast Health, 2021, 17(4): 341-351.
[18]
Liu B, Zheng X, Meng F, et al. Overexpression of β1 integrin contributes to polarity reversal and a poor prognosis of breast invasive micropapillary carcinoma[J]. Oncotarget, 2018, 9(4): 4338-4353.
[19]
Li W, Yang D, Wang S, et al. Increased expression of CD146 and microvessel density (MVD) in invasive micropapillary carcinoma of the breast: comparative study with invasive ductal carcinoma-not otherwise specified[J]. Pathol Res Pract, 2011, 207(12): 739-746.
[20]
Zhi R, Wu K, Zhang J, et al. PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast[J]. Cancer Sci, 2023, 114(5): 1912-1928.
[21]
Luís C, Soares R, Fernandes R, et al. Cell-adhesion molecules as key mechanisms of tumor invasion: the case of breast cancer[J]. Curr Mol Med, 2023, 23(2): 147-160.
[22]
Corso G, Figueiredo J, de Angelis S P, et al. E-cadherin deregulation in breast cancer[J]. J Cell Mol Med, 2020, 24(11): 5930-5936.
[23]
Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, et al. Role of cadherins in cancer-a review[J]. Int J Mol Sci, 2020, 21(20):7624.
[24]
Nagi C, Guttman M, Jaffer S, et al. N-cadherin expression in breast cancer: correlation with an aggressive histologic variant--invasive micropapillary carcinoma[J]. Breast Cancer Res Treat, 2005, 94(3): 225-235.
[25]
Dreyer C A, vander Vorst K, Free S, et al. The role of membrane mucin MUC4 in breast cancer metastasis[J]. Endocr Relat Cancer, 2021, 29(1): R17-r32.
[26]
Mercogliano M F, Inurrigarro G, de Martino M, et al. Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer[J]. BMC Cancer, 2017, 17(1): 895.
[27]
Mercogliano M F, de Martino M, Venturutti L, et al. TNFα-induced Mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer[J]. Clin Cancer Res, 2017, 23(3): 636-648.
[28]
Cui L F, Guo X J, Wei J, et al. Overexpression of TNF-alpha and TNFRII in invasive micropapillary carcinoma of the breast: clinicopathological correlations[J]. Histopathology, 2008, 53(4): 381-388.
[29]
Bruni S, Mauro F L, Proietti C J, et al. Blocking soluble TNFα sensitizes HER2-positive breast cancer to trastuzumab through MUC4 downregulation and subverts immunosuppression[J]. J Immunother Cancer, 2023, 11(3): e005325.
[30]
Badyal R K, Bal A, Das A, et al. Invasive micropapillary carcinoma of the breast: immunophenotypic analysis and role of cell adhesion molecules (CD44 and E-cadherin) in nodal metastasis[J]. Appl Immunohistochem Mol Morphol, 2016, 24(3): 151-158.
[31]
Huang L, Ji H, Yin L, et al. High expression of plakoglobin promotes metastasis in invasive micropapillary carcinoma of the breast via tumor cluster formation[J]. J Cancer, 2019, 10(12): 2800-2810.
[32]
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1): 131.
Guo X, Fan Y, Lang R, et al. Tumor infiltrating lymphocytes differ in invasive micropapillary carcinoma and medullary carcinoma of breast[J]. Mod Pathol, 2008, 21(9): 1101-1107.
[35]
Guo X, Chen L, Lang R, et al. Invasive micropapillary carcinoma of the breast: association of pathologic features with lymph node metastasis[J]. Am J Clin Pathol, 2006, 126(5): 740-746.
[36]
Goyal A V, Shukla S, Acharya S, et al. Correlation of microvessel density with histopathological parameters of carcinoma breast[J]. Indian J Med Res, 2023, 158(4): 417-422.
[37]
Vieira T C, Oliveira E A, Dos Santos B J, et al. COX-2 expression in mammary invasive micropapillary carcinoma is associated with prognostic factors and acts as a potential therapeutic target in comparative oncology[J]. Front Vet Sci, 2022, 9: 983110.
[38]
Liu F, Lang R, Wei J, et al. Increased expression of SDF-1/CXCR4 is associated with lymph node metastasis of invasive micropapillary carcinoma of the breast[J]. Histopathology, 2009, 54(6): 741-750.
[39]
Gruel N, Benhamo V, Bhalshankar J, et al. Polarity gene alterations in pure invasive micropapillary carcinomas of the breast[J]. Breast Cancer Res, 2014, 16(3): R46.
[40]
Gil-Henn H, Girault J A, Lev S. PYK2, a hub of signaling networks in breast cancer progression[J]. Trends Cell Biol, 2024, 34(4): 312-326.
[41]
Marchiò C, Iravani M, Natrajan R, et al. Mixed micropapillary-ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components[J]. J Pathol, 2009, 218(3): 301-315.
[42]
Meng F, Liu B, Xie G, et al. Amplification and overexpression of PSCA at 8q24 in invasive micropapillary carcinoma of breast[J]. Breast Cancer Res Treat, 2017, 166(2): 383-392.
[43]
Shi Q, Shao K, Jia H, et al. Genomic alterations and evolution of cell clusters in metastatic invasive micropapillary carcinoma of the breast[J]. Nat Commun, 2022, 13(1): 111.
[44]
Lv J, Shi Q, Han Y, et al. Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast[J]. Cell Death Dis, 2021, 12(12): 1095.
[45]
Wu K, Li W, Liu H, et al. Metabolome sequencing reveals that protein arginine-N-methyltransferase 1 promotes the progression of invasive micropapillary carcinoma of the breast and predicts a poor prognosis[J]. Am J Pathol, 2023, 193(9): 1267-1283.