[1] |
Diermeier T A, Rothrauff B B, Engebretsen L, et al. Treatment after ACL injury: panther symposium ACL treatment consensus group[J]. Br J Sports Med, 2021,55(1):14-22.
|
[2] |
Jarraya M, Guermazi A, Roemer F W. Osteoarthritis year in review 2023: Imaging[J]. Osteoarthritis Cartilage, 2024,32(1):18-27.
|
[3] |
Brophy R H, Lowry K J. American academy of orthopaedic surgeons clinical practice guideline summary: management of anterior cruciate ligament injuries[J]. J Am Acad Orthop Surg, 2023,31(11):531-537.
|
[4] |
Kochman M, Kasprzak M, Kielar A. ACL reconstruction: Which additional physiotherapy interventions improve early-stage rehabilitation? A Systematic Review[J]. Int J Environ Res Public Health, 2022,19(23):15893.
|
[5] |
Culvenor A G, Girdwood M A, Juhl C B, et al. Rehabilitation after anterior cruciate ligament and meniscal injuries: a best-evidence synthesis of systematic reviews for the OPTIKNEE consensus[J]. Br J Sports Med, 2022,56(24):1445-1453.
|
[6] |
Buckthorpe M, Gokeler A, Herrington L, et al. Optimising the early-stage rehabilitation process Post-ACL reconstruction[J]. Sports Med, 2024,54(1):49-72.
|
[7] |
Ferretti A, Carrozzo A, Saithna A, et al. Comparison of primary repair of the anterior cruciate ligament and anterolateral structures to reconstruction and lateral extra-articular tenodesis at 2-Year follow-up[J]. Am J Sports Med, 2023,51(9):2300-2312.
|
[8] |
Zhang S, Wen A, Li S, et al. Radial extracorporeal shock wave therapy enhances graft maturation at 2-Year follow-up after ACL reconstruction: a randomized controlled trial[J]. Orthop J Sports Med, 2022,10(9):23259671221116340.
|
[9] |
Xu J, Ye Z, Han K, et al. Infrapatellar fat pad mesenchymal stromal Cell-derived exosomes accelerate Tendon-bone healing and intra-articular graft remodeling after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2022,50(3):662-673.
|
[10] |
Li Z, Li Q, Tong K, et al. BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats[J]. Stem Cell Res Ther, 2022,13(1):295.
|
[11] |
Ye Z, Xu J, Chen J, et al. Effect of anterolateral structure augmentation on graft maturity after anterior cruciate ligament reconstruction:a clinical and MRI follow-up of 2 years[J]. Am J Sports Med, 2022,50(7):1805-1814.
|
[12] |
Rahim M, Ooi F K, Shihabudin M T, et al. The effects of three and six sessions of low energy extracorporeal shockwave therapy on graft incorporation and knee functions post anterior cruciate ligament reconstruction[J]. Malays Orthop J, 2022,16(1):28-39.
|
[13] |
Benjamin M, Toumi H, Ralphs J R, et al. here tendons and ligaments meet bone: attachment sites ('entheses') in relation to exercise and/or mechanical load[J]. J Anat, 2006,208(4):471-90.
|
[14] |
Oda T, Maeyama A, Ishimatsu T, et al. Soft tissue stabilization of the hinge position for lateral closing-wedge distal femoral osteotomy: An anatomic study[J]. Orthop J Sports Med, 2024,12(3):23259671241233014.
|
[15] |
Soni S, Brahmbhatt V, Tolani M, et al. Functional outcomes in anterior cruciate ligament (ACL) Reconstruction: a nine-month follow-up study using lysholm score in a rural tertiary care center in India[J]. Cureus, 2024,16(2):e53480.
|
[16] |
Moretti L, Bizzoca D, Cassano G D, et al. Graft intra-articular remodeling and bone incorporation in ACL reconstruction: the state of the art and clinical implications[J]. J Clin Med, 2022,11(22):6704.
|
[17] |
Yau W P, Chan Y C. Evaluation of graft ligamentization by MRI after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2023,51(6):1466-1479.
|
[18] |
Rodríguez-Merchán E C. Anterior cruciate ligament reconstruction: is biological augmentation beneficial?[J]. Int J Mol Sci, 2021,22(22):12566.
|
[19] |
Hexter A T, Thangarajah T, Blunn G, et al. Biological augmentation of graft healing in anterior cruciate ligament reconstruction: a systematic review[J]. Bone Joint J, 2018,100-B(3):271-284.
|
[20] |
Zhao X, Wu G, Zhang J, et al. Activation of CGRP receptor-mediated signaling promotes tendon-bone healing[J]. Sci Adv, 2024,10(10):eadg7380.
|
[21] |
Medina C. Shockwave therapy in veterinary rehabilitation[J]. Vet Clin N Am Small, 2023,53(4):775-781.
|
[22] |
Smallcomb M, Khandare S, Vidt M E, et al. Therapeutic ultrasound and shockwave therapy for tendinopathy: a narrative review[J]. Am J Phys Med Rehabil, 2022,101(8):801-807.
|
[23] |
Stania M, Juras G, Chmielewska D, et al. Extracorporeal shock wave therapy for achilles tendinopathy[J]. Biomed Res Int, 2019,2019:3086910.
|
[24] |
De la Corte-Rodríguez H, Román-Belmonte J M, Rodríguez-Damiani B A, et al. Extracorporeal shock wave therapy for the treatment of musculoskeletal pain: a narrative review[J]. Healthcare (Basel), 2023,11(21):2830.
|
[25] |
Mansur N, Matsunaga F T, Carrazzone O L, et al. Shockwave therapy plus eccentric exercises versus isolated eccentric exercises for achilles insertional tendinopathy: a double-blinded randomized clinical trial[J]. J Bone Joint Surg Am, 2021,103(14):1295-1302.
|
[26] |
Alvarez L. Extracorporeal shockwave therapy for musculoskeletal pathologies[J]. Vet Clin North Am Small Anim Pract, 2022,52(4):1033-1042.
|
[27] |
Feeney K M. The effectiveness of extracorporeal shockwave therapy for midportion achilles tendinopathy: a systematic review[J]. Cureus, 2022,14(7):e26960.
|
[28] |
Weninger P, Thallinger C, Chytilek M, et al. Extracorporeal shockwave therapy improves outcome after primary anterior cruciate ligament reconstruction with hamstring tendons[J]. J Clin Med, 2023,12(10):3350.
|
[29] |
Haupt G, Haupt A, Ekkernkamp A, et al. Influence of shock waves on fracture healing[J]. Urology, 1992,39(6):529-532.
|
[30] |
Wang F S, Yang K D, Chen R F, et al. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1[J]. J Bone Joint Surg Br, 2002,84(3):457-461.
|
[31] |
Chen Q, Yang Z, Sun X, et al. Inokosterone activates the BMP2 to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and improve bone loss in ovariectomized rats[J]. Biochem Biophys Res Commun, 2023,682:349-358.
|
[32] |
Schaden W, Fischer A, Sailler A, et al. Extracorporeal shock wave therapy of nonunion or delayed osseous union[J]. Clin Orthop Relat Res. 2001. (387): 90-94.
|
[33] |
Wang C J. Extracorporeal shockwave therapy in musculoskeletal disorders[J]. J Orthop Surg Res, 2012,7:11.
|
[34] |
Elster E A, Stojadinovic A, Forsberg J, et al. Extracorporeal shock wave therapy for nonunion of the tibia[J]. J Orthop Trauma, 2010,24(3):133-141.
|
[35] |
Charles R, Fang L, Zhu R, et al. The effectiveness of shockwave therapy on patellar tendinopathy, Achilles tendinopathy, and plantar fasciitis: a systematic review and meta-analysis[J]. Front Immunol, 2023,14:1193835.
|
[36] |
Kim K S, Choi Y S, Bae W J, et al. Efficacy of low-Intensity extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome IIIb: A prospective-randomized, double-Blind, placebo-controlled study[J]. World J Mens Health, 2022,40(3):473-480.
|
[37] |
Guo P, Gao F, Zhao T, et al. Positive effects of extracorporeal shock wave therapy on spasticity in poststroke patients: a meta-analysis[J]. J Stroke Cerebrovasc Dis, 2017,26(11):2470-2476.
|
[38] |
Wang C J, Wang F S, Yang K D, et al. The effect of shock wave treatment at the tendon-bone interface-an histomorphological and biomechanical study in rabbits[J]. J Orthop Res, 2005,23(2):274-280.
|
[39] |
石 斌, 刘玉杰, 王志刚, 等. 体外冲击波对兔ACL重建腱骨愈合影响的组织学观察[J]. 军医进修学院学报, 2010,31(10):951-953.
|
[40] |
Vetrano M, d’Alessandro F, Torrisi M R, et al. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes[J]. Knee Surg Sports Traumatol Arthrosc, 2011,19(12):2159-2168.
|
[41] |
Wang C J, Ko J Y, Chou W Y, et al. Shockwave therapy improves anterior cruciate ligament reconstruction[J]. J Surg Res, 2014,188(1):110-118.
|
[42] |
Panos J A, Webster K E, Hewett T E. Anterior cruciate ligament grafts display differential maturation patterns on magnetic resonance imaging following reconstruction: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2020,28(7):2124-2138.
|
[43] |
耿 坤. 体外冲击波对自体肌腱重建前交叉韧带后膝关节功能加速康复的疗效对比观察[D].大连:大连医科大学,2020.
|
[44] |
温爱珍. 发散式体外冲击波疗法对前交叉韧带重建术后男性短期临床疗效和移植物成熟度的影响[D].上海:上海体育学院,2021.
|
[45] |
傅胤泓. 专业运动员前交叉韧带重建术后运动康复干预效果研究[D].郑州:郑州大学,2022.
|
[46] |
高耀东. 体外冲击波治疗前交叉韧带部分断裂的疗效分析[D].沈阳:中国医科大学,2023.
|
[47] |
石宏悦, 王 伟, 王晓东, 等. 冲击波联合等速肌力训练系统治疗前交叉韧带损伤重建术后患者的临床疗效[J]. 西部医学, 2023,35(8):1147-1151.
|
[48] |
张 怡, 谷媛媛, 曲径直, 等. 体外冲击波疗法联合下肢肌力训练对关节镜下前交叉韧带重建术后患者关节稳定性活动度及平衡功能的影响[J]. 河北医学, 2023,29(4):587-591.
|
|
|