Shah K, Gadiya A, Shah M, et al. Does three-dimensional printed patient-specific templates add benefit in revision surgeries for complex pediatric kyphoscoliosis deformity with sublaminar wires in situ? A clinical study[J]. Asian Spine, 2021, 15(1): 46-53.
[3]
Lopez C D, Boddapati V, Lee N J, et al. Three-Dimensional printing for preoperative planning and pedicle screw placement in adult spinal deformity: a systematic review[J]. Global Spine, 2021, 11(6): 936-949.
[4]
Park H J, Wang C, Choi K H, et al. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training[J]. J Orthop Surg Res, 2018, 13(1): 86.
[5]
Ye Z, Dun A, Jiang H, et al. The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis[J]. BMC Med Educ, 2020, 20(1): 335.
[6]
Wu A M, Lin J L, Kwan K Y, et al. 3D-printing techniques in spine surgery: the future prospects and current challenges[J]. Expert Rev Med Devices, 2018, 15(6): 399-401.
[7]
Cho W, Job A V, Chen J, et al. A review of current clinical applications of three-dimensional printing in spine surgery[J]. Asian Spine J, 2018, 12(1): 171-177.
[8]
Cecchinato R, Berjano P, Zerbi A, et al. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: a prospective, randomized clinical trial[J]. Eur Spine J, 2019, 28(7): 1712-1723.
Guo F, Dai J, Zhang J, et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine[J]. PLoS One, 2017, 12(2): e0171509.
[11]
Yu C, Ou Y, Xie C, et al. Pedicle screw placement in spinal neurosurgery using a 3D-printed drill guide template: a systematic review and meta-analysis[J]. J Orthop Surg Res, 2020, 15(1): 1.
Tu Q, Ding H W, Chen H, et al. Three-Dimensional-Printed individualized guiding templates for surgical correction of severe kyphoscoliosis secondary to ankylosing spondylitis: outcomes of 9 cases[J]. World Neurosurg, 2019, 130: e961-e970.
[14]
Mcgilvray K C, Easley J, Seim H B, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model[J]. Spine J, 2018, 18(7): 1250-1260.
[15]
Lohberger B, Eck N, Glaenzer D, et al. Surface modifications of titanium aluminium vanadium improve biocompatibility and osteogenic differentiation potential[J]. Materials(Basel), 2021, 14:1574.
Brenke C, Kindling S, Scharf J, et al. Short-term experience with a new absorbable composite cage(beta-tricalcium phosphate-polylactic acid) in patients after stand-alone anterior cervical discectomy and fusion[J]. Spine(Phila Pa 1976), 2013, 38(11): E635-640.
Wei F, Li Z, Liu Z, et al. Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2[J]. Ann Transl Med, 2020, 8(6): 332.
Wang X, Xu H, Han Y, et al. Biomechanics of artificial pedicle fixation in a 3D-printed prosthesis after total en bloc spondylectomy: a finite element analysis[J]. J Orthop Surg Res, 2021, 16(1): 213.
[23]
Wang Y, Zhang X, Zhang Y, et al. One-stage posterior en-bloc spondylectomy following reconstruction with individualized 3D printed artificial vertebrae for multi-segment thoracolumbar metastases: case report and literature review[J]. Am J Transl Res, 2021, 13(1): 115-123.
[24]
Lv Z R, Li Z F, Yang Z P, et al. One-Step reconstruction with a novel suspended, modular, and 3D-printed total sacral implant resection of sacral giant cell tumor with preservation of bilateral s1-3 nerve roots via a posterior-only approach[J]. Orthop Surg, 2020, 12(1): 58-66.
[25]
Rosenzweig D H, Carelli E, Steffen T, et al. 3D-Printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration[J]. Int J Mol Sci, 2015, 16(7): 15118-15135.
[26]
Liu B, Wang Z, Lin G, et al. Radiculoplasty with reconstruction using 3D-printed artificial dura mater for the treatment of symptomatic sacral canal cysts: two case reports[J]. Medicine(Baltimore), 2018, 97(49): e13289.
[27]
Sun B, Lian M, Han Y, et al. A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus reconstruction[J]. Bioact Mater, 2021, 6(1): 179-190.
[28]
Zhu M, Tan J, Liu L, et al. Construction of biomimetic artificial intervertebral disc scaffold via 3D printing and electrospinning[J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112310.
[29]
de Pieri A, Byerley A M, Musumeci C R, et al. Electrospinning and 3D bioprinting for intervertebral disc tissue engineering[J]. JOR Spine, 2020, 3(4): e1117.
[30]
Grant C A, Izatt M T, Labrom R D, et al. Use of 3D printing in complex spinal surgery: historical perspectives, current usage, and future directions[J]. Tech Orthop, 2016, 31(3): 172-180.