Xia X, Yue W, Chao B, et al. Prevalence and risk factors of stroke in the elderly in northern china: data from the national stroke screening survey[J]. J Neurol,2019, 266(6):1449-1458.
[2]
Norrving B, Kissela B. The global burden of stroke and need for a continuum of care[J]. Neurology,2013, 80(3 Suppl 2): S5-S12.
[3]
Jia Q, Liu L P, Wang Y J. Stroke in china[J]. Clin Exp Pharmacol Physiol, 2010, 37(2):259-264.
[4]
Kanazawa M, Takahashi T, Nishizawa M, et al. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke[J]. J Atheroscler Thromb, 2017, 24(3): 240-253.
[5]
Jickling G C, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans[J]. J Cereb Blood Flow Metab, 2014, 34(2):185-199.
[6]
Ravanan P, Srikumar I F, Talwar P. Autophagy: The spotlight for cellular stress responses[J]. Life Sci, 2017, 188: 53-67.
[7]
Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell, 2010,40(2):280-293.
[8]
Song S, Nie Q, Li Z, et al. Curcumin improves neurofunctions of 6-ohda-induced parkinsonian rats[J]. Pathol Res Pract, 2016, 212(4):247-251.
[9]
Mulcahy Levy J M, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients[J]. Cell Death Differ, 2020,27(3):843-857.
[10]
Mizushima N. Autophagy: process and function[J]. Genes Dev, 2007,21(22):2861-2873.
[11]
Mizushima N, Klionsky D J. Protein turnover via autophagy: implications for metabolism[J]. Annu Rev Nutr, 2007, 27:19-40.
[12]
del Zoppo G J, Hallenbeck J M. Advances in the vascular pathophysiology of ischemic stroke[J]. Thromb Res, 2000,98(3):73-81.
[13]
Wang P R, Wang J S, Zhang C, et al. Huang-lian-jie-du-decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via mapk-mtor signaling pathway[J]. J Ethnopharmacol, 2013, 149(1):270-280.
[14]
Li D, Wang C, Yao Y, et al. Mtorc1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from m1 type to m2 type[J]. Faseb J, 2016, 30(10):3388-3399.
[15]
Nakahira K, Haspel J A, Rathinam V A, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the nalp3 inflammasome[J]. Nat Immunol, 2011,12(3): 222-230.
[16]
Wang J F, Mei Z G, Fu Y, et al. Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the ampk-mtor-ulk1 signaling pathway[J]. Neural Regen Res, 2018,13(6):989-998.
[17]
Roleira F M, Tavares-da-Silva E J, Varela C L, et al. Plant derived and dietary phenolic antioxidants: Anticancer properties[J]. Food Chem, 2015,183:235-258.
[18]
Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay[J]. Biomed Res Inter, 2014,2014:761264.
[19]
Rahman A, Fazal F, Greensill J, et al. Strand scission in DNA induced by dietary flavonoids: role of cu(i) and oxygen free radicals and biological consequences of scission[J]. Mol Cell Biochem, 1992,111(1-2):3-9.
[20]
Cherubini A, Ruggiero C, Polidori M C, et al. Potential markers of oxidative stress in stroke[J]. Free Radic Biol Med, 2015, 39(7):841-852.
[21]
Willcox J K, Ash S L, Catignani G L. Antioxidants and prevention of chronic disease[J]. Crit Rev Food Sci Nutr, 2015, 44(4): 275-295.
[22]
Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: impact on human health[J]. Pharmacogn Rev, 2010, 4(8): 118-126.
[23]
Di Meo S, Reed T T. Role of ROS and rns sources in physiological and pathological conditions[J]. Oxid Med Cell Longev, 2016, 2016:1245049.
[24]
Sosa V, Moline T, Somoza R, et al. Oxidative stress and cancer: an overview[J]. Ageing Res Rev, 2013,12(1):376-390.
[25]
Zheng L, Cardaci S, Jerby L, et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism[J]. Nat Commun, 2015,6:6001.
[26]
Gems D, Partridge L. Stress-response hormesis and aging: "That which does not kill us makes us stronger"[J]. Cell Metab, 2008,7(3):200-203.
[27]
Yu Y P, Chi X L, Liu L J. A hypothesis: hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury[J]. Scientific World J, 2014, 2014: 432318.
[28]
Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances[J]. Pharmacol Rev, 2009, 61(1): 62-97.
[29]
Eigel B N, Gursahani H, Hadley R W. ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes[J]. Am J Physiol Heart Circ Physiol, 2004, 286(3): H955-963.
[30]
Moon G J, Shin D H, Im D S, et al. Identification of oxidized serum albumin in the cerebrospinal fluid of ischaemic stroke patients[J]. Eur J Neurol, 2011, 18(9):1151-1158.
[31]
Cherubini A, Polidori M C, Bregnocchi M, et al. Antioxidant profile and early outcome in stroke patients[J]. Stroke, 2000, 31(10):2295-2300.
[32]
Yagi K, Kitazato K T, Uno M, et al. Edaravone, a free radical scavenger, inhibits mmp-9-related brain hemorrhage in rats treated with tissue plasminogen activator[J]. Stroke, 2009,40(2):626-631.
[33]
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: upstream and downstream therapeutic strategies[J]. Brain Circ,2016,2(4):153-163.
[34]
Adhami F, Schloemer A, Kuan C Y. The roles of autophagy in cerebral ischemia[J]. Autophagy, 2007, 3(1): 42-44.
[35]
Lee Y, Kim E K. Amp-activated protein kinase as a key molecular link between metabolism and clockwork[J]. Exp Mol Med, 2013, 45: e33.
[36]
Poels J, Spasic M R, Callaerts P, et al. Expanding roles for amp-activated protein kinase in neuronal survival and autophagy[J]. Bioessays, 2009,31(9):944-952.
[37]
Wang Y, Nartiss Y, Steipe B, et al. ROS-induced mitochondrial depolarization initiates park2/parkin-dependent mitochondrial degradation by autophagy[J]. Autophagy, 2012,8(10):1462-1476.
[38]
Xiao B, Deng X, Lim G G Y, et al. Superoxide drives progression of parkin/pink1-dependent mitophagy following translocation of parkin to mitochondria[J]. Cell Death Dis, 2017, 8(10): e3097.
[39]
Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of atg4[J]. Embo J, 2007, 26(7):1749-1760.
[40]
Wen X, Wu J, Wang F, et al. Deconvoluting the role of reactive oxygen species and autophagy in human diseases[J]. Free Radic Biol Med, 2013, 65: 402-410.
[41]
Ichimura Y, Waguri S, Sou Y S, et al. Phosphorylation of p62 activates the keap1-nrf2 pathway during selective autophagy[J]. Mol Cell, 2013, 51(5): 618-631.
[42]
Zhuang X X, Wang S F, Tan Y. Pharmacological enhancement of tfeb-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson’s disease models[J]. Cell Death Dis, 2020,11(2):128.