Dagnelie P C, Willems P C, Jørgensen N R. Nutritional status as independent prognostic factor of outcome and mortality until five years after hip fracture: a comprehensive prospective study[J]. Osteoporos Int, 2024, 35(7): 1273-1287.
[2]
Woloszyk A, Tuong Z K, Perez L, et al. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes[J]. Biomater Adv, 2022, 139: 213027.
[3]
Brown M G, Brady D J, Healy K M, et al. Stem cells and acellular preparations in bone regeneration/fracture healing: current therapies and future directions[J]. Cells, 2024, 13(12): 1045.
[4]
Desbiens L C, Goupil R, Sidibé A, et al. Fracture status in middle-aged individuals with early CKD: cross-sectional analysis of the CARTaGENE survey[J]. Osteoporos Int, 2019, 30(4): 787-795.
[5]
Liu M, Wang X, Sun B, et al. Electrospun membranes chelated by metal magnesium ions enhance pro-angiogenic activity and promote diabetic wound healing[J]. Int J Biol Macromol, 2024, 259(Pt 2): 129283.
[6]
Chen Z, Jin M, He H, et al. Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing[J]. J Orthop Translat, 2023, 39: 63-73.
[7]
Zhang Y, Shu T, Wang S, et al. The osteoinductivity of calcium phosphate-based biomaterials: a tight interaction with bone healing[J]. Front Bioeng Biotech, 2022, 10: 911180.
[8]
Rifah S S, Zaman M S, Piya A A, et al. Exploring the anodic performance of ScSeS and TiSeS monolayers of modified transition metal dichalcogenides for Mg ion batteries via DFT calculations[J]. Phys Chem Chem Phys, 2024, 26(8): 6667-6677.
[9]
Yang Q, Sun X, Ding Q, et al. An ATP-responsive metal-organic framework against periodontitis via synergistic ion-interference-mediated pyroptosis[J]. Natl Sci Rev, 2024, 11(8): nwae225.
[10]
Zawisza B, Sitko R, Gagor A. Determination of ultra-trace gold in cosmetics using aluminum-magnesium layered double hydroxide/graphene oxide nanocomposite[J]. Talanta, 2022, 245: 123460.
[11]
Liu C, Bian X, Kwok R T K, et al. Biological synthesis and process monitoring of an aggregation-induced emission luminogen-based fluorescent polymer[J]. JACS Au, 2022, 2(9): 2162-2168.
[12]
Chopra H, Bibi S, Singh I, et al. Green metallic nanoparticles: biosynthesis to applications[J]. Front Bioeng Biotechnol, 2022, 10: 874742.
[13]
Liu H, Wang X. Esophageal organoids: applications and future prospects[J]. J Mol Med(Berl), 2023, 101(8): 931-945.
[14]
Chormey D S, Zaman B T, Borahan Kustanto T, et al. Biogenic synthesis of novel nanomaterials and their applications[J]. Nanoscale, 2023, 15(48): 19423-19447.
[15]
Tariq M, Mohammad K N, Ahmed B, et al.Biological synthesis of silver nanoparticles and prospects in plant disease management[J]. Molecules, 2022, 27(15): 4754.
[16]
Oladipo A O, Nkambule T T I, Mamba B B, et al. Therapeutic nanodendrites: current applications and prospects[J]. Nanoscale Adv, 2020, 2(11): 5152-5165.
[17]
Chandrasekaran R, Patil S, Krishnan M, et al.The characteristics of Green-synthesized magnesium oxide nanoparticles(MgONPs) and their biomedical applications[J]. Mini Rev Med Chem, 2023, 23(9): 1058-1069.
[18]
Khalid A, Norello R, N Abraham A, et al. Biocompatible and biodegradable magnesium oxide nanoparticles with in vitro photostable near-infrared emission: short-term fluorescent markers[J]. Nanomaterials(Basel), 2019, 9(10): 1360.
[19]
Pryjmaková J, Vokatá B, Slepicka P, et al. Laser-processed PEN with Au nanowires array: a biocompatibility assessment[J]. Int J Mol Sci, 2022, 23(18): 10953.
[20]
Wang G, Luo J, Qiao Y, et al. AMPK/mTOR pathway is involved in autophagy induced by magnesium-incorporated TiO2 surface to promote BMSC osteogenic differentiation[J]. J Funct Biomater, 2022, 13(4): 221.
[21]
Yan Z, Sun T, Tan W, et al. Magnetic field boosts the transmembrane transport efficiency of magnesium ions from PLLA bone scaffold[J]. Small, 2023, 19(40): e2301426.
Zhao Y, He P, Wang B, et al. Incorporating pH/NIR responsive nanocontainers into a smart self-healing coating for a magnesium alloy with controlled drug release, bacteria killing and osteogenesis properties[J]. Acta Biomater, 2024, 174: 463-481.
[24]
Zhao Y, He P, Yao J, et al. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy[J]. Biomaterials, 2023, 301: 122237.
[25]
Laurenti M, Al Subaie A, Abdallah M N,et al. Two-dimensional magnesium phosphate nanosheets form highly thixotropic gels that up-regulate bone formation[J]. Nano Lett, 2016, 16(8): 4779-4787.
[26]
Qi T, Weng J, Yu F, et al. Insights into the role of magnesium ions in affecting osteogenic differentiation of mesenchymal stem cells[J]. Biol Trace Elem Res, 2021, 199(2): 559-567.
[27]
Wang C, Liu J, Min S, et al. The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: an in vitro and in vivo study[J]. Bioact Mater, 2023, 28: 537-548.
[28]
Yang M, Cai X, Wang C,et al. Highly stable amorphous(Pyro)phosphate aggregates: pyrophosphate as a carrier for bioactive ions and drugs in bone repair applications[J]. ACS Omega, 2024, 9(22): 23724-23740.
Li J, Ke H, Lei X, et al. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing[J]. Bioact Mater, 2024, 36: 62-82.
[32]
Zhao Y, Liang H, Zhang S, et al. Effects of magnesium oxide(MgO) shapes on in vitro and in vivo degradation behaviors of PLA/MgO composites in long term[J]. Polymers(Basel), 2020, 12(5): 1074.
[33]
Pan H, Gao H, Li Q, et al. Engineered macroporous hydrogel scaffolds via pickering emulsions stabilized by MgO nanoparticles promote bone regeneration[J]. J Mater Chem B, 2020, 8(28): 6100-6114.
[34]
Chen R, Chen H B, Xue P P, et al. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats[J]. J Mater Chem B, 2021, 9(4): 1107-1122.
[35]
Huang L, Cai P, Bian M, et al. Injectable and high-strength PLGA/CPC loaded ALN/MgO bone cement for bone regeneration by facilitating osteogenesis and inhibiting osteoclastogenesis in osteoporotic bone defects[J]. Mater Today Bio, 2024, 26: 101092
[36]
Zhang K, Lin S, Feng Q, et al. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration[J]. Acta Biomater, 2017, 64: 389-400.
[37]
Nan J, Liu W, Zhang K, et al. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes[J]. Front Bioeng Biotechnol, 2022, 10: 1038250.
[38]
Zhang X, Gong C, Wang X, et al. A bioactive gelatin-methacrylate incorporating magnesium phosphate cement for bone regeneration[J]. Biomedicines, 2024, 12(1): 228.
[39]
Pei M, Li P, Guo X, et al. Sustained release of hydrogen and magnesium ions mediated by a foamed gelatin-methacryloyl hydrogel for the repair of bone defects in diabetes[J]. ACS Biomater Sci Eng, 2024, 10(7): 4411-4424.
Li X, Dai B, Guo J, et al. Biosynthesized bandages carrying magnesium oxide nanoparticles induce cortical bone formation by modulating endogenous periosteal cells[J]. ACS Nano, 2022, 16(11): 18071-18089.
[44]
Li D, Dai D, Wang J, et al. Honeycomb bionic graphene oxide quantum dot/layered double hydroxide composite nanocoating promotes osteoporotic bone regeneration via activating mitophagy[J]. Small, 2024, 20(50): e2403907.
[45]
Zheng Z, Chen Y, Hong H, et al. The “Yin and Yang” of immunomodulatory magnesium-enriched graphene oxide nanoscrolls decorated biomimetic scaffolds in promoting bone regeneration[J]. Adv Healthc Mater, 2021, 10(2): e2000631.
[46]
Perumal G, Ramasamy B, Nandkumar A M, et al. Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect[J]. Nanomedicine, 2020, 29: 102232.
Zhang Z, Gong N, Wang Y, et al. Impact of strontium, magnesium, and zinc ions on the in vitro osteogenesis of maxillary sinus membrane stem cells[J]. Biol Trace Elem Res, 2024.
[49]
Li C, Sun J, Shi K, et al. Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect[J]. J Mater Chem B, 2020, 8(21): 4575-4586.
[50]
Lee H, Shin D Y, Na Y, et al. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants[J]. Biomater Adv, 2023, 152: 213523.
[51]
Wang W, Song Y, Tian Y, et al. TCPP/MgO-loaded PLGA microspheres combining photodynamic antibacterial therapy with PBM-assisted fibroblast activation to treat periodontitis[J] Biomater Sci, 2023, 11(8): 2828-2844.
[52]
Varsavas S D, Michalec P, Khalifa M, et al. Cytocompatibility of polymers for skin-contact applications produced via pellet extrusion[J]. J Funct Biomater, 2024, 15(7): 179.
[53]
Sood K, Shanavas A. Autologous serum protein stabilized silver quantum clusters as host-specific antibacterial agents[J]. Nanomedicine(Lond), 2024, 19(21-22): 1761-1778.
[54]
Foo M A, You M, Chan S L, et al. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies[J]. Biomark Res, 2022, 10(1): 10.