[1] |
Dinisoliveira R J, Duarte J A, Sáncheznavarro A, et al. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment [J]. Critical Reviews in Toxicology, 2008, 38(1):13-71.
|
[2] |
Wang X, Luo F, Zhao H. Paraquat-Induced Reactive Oxygen Species Inhibit Neutrophil Apoptosis via a p38 MAPK/NF-κB-IL-6/TNF-α Positive-Feedback Circuit [J]. PloS one, 2014, 9(4): e93837.
|
[3] |
朱文捷, 陈英杰, 吴贤仁. 急性百草枯中毒流行病学调查及预后影响因素分析[J]. 黑龙江医学, 2015, 39(8):925-926.
|
[4] |
Singer M, Deutschman C S, Seymour C W, et al.The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) [J]. JAMA, 2016, 315(8): 801-810.
|
[5] |
Russell J A. Management of sepsis [J]. N Engl J Med, 2006, 355(16): 1699-1713.
|
[6] |
Angus D C, Van der Poll T. Severe sepsis and septic shock [J]. New England Journal of Medicine, 2013, 369(9): 840-851.
|
[7] |
Steinman R M, Idoyaga J. Features of the dendritic cell lineage [J]. Immunological Reviews, 2010, 234(1):5-17.
|
[8] |
Thangavel J, Samanta S, Rajasingh S, et al. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury [J]. J Cell Sci, 2015, 128(16): 3094-3105.
|
[9] |
Epelman S, Lavine K J, Randolph G J. Origin and functions of tissue macrophages [J]. Immunity, 2014, 41(1): 21-35.
|
[10] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation [J]. Cell, 2010, 140(6): 805-820.
|
[11] |
Gordon S, Martinez F O. Alternative activation of macrophages: mechanism and functions [J]. Immunity, 2010, 32(5): 593-604.
|
[12] |
Wynn T A, Vannella K M. Macrophages in Tissue Repair, Regeneration, and Fibrosis [J]. Immunity, 2016, 44(3): 450-462.
|
[13] |
Glass C K, Natoli G. Molecular control of activation and priming in macrophages [J]. Nat Immunol, 2016, 17(1): 26-33.
|
[14] |
O’neill L A, Golenbock D, Bowie A G. The history of Toll-like receptors-redefining innate immunity[J]. Nat Rev Immunol, 2013, 13(6): 453-460.
|
[15] |
Schmitz M L, Weber A, Roxlau T, et al. Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines[J]. Biochim Biophys Acta, 2011, 1813(12): 2165-2175.
|
[16] |
Chong W, Li Y, Liu B, et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates Toll-like receptor 4 signaling in lipopolysaccharide-stimulated mouse macrophages[J]. J Surg Res, 2012, 178(2): 851-859.
|
[17] |
Chong W, Li Y, Liu B, et al. Anti-inflammatory properties of histone deacetylase inhibitors: a mechanistic study [J]. J Trauma Acute Care Surg, 2012, 72(2): 347-353; discussion 353-354.
|
[18] |
Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice [J]. J Clin Invest, 2011, 121(3): 985-997.
|
[19] |
Bernstein B E, Meissner A, Lander E S. The mammalian epigenome[J]. Cell, 2007, 128(4): 669-681.
|
[20] |
Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128(4): 693-705.
|
[21] |
Gunawardhana L P, Gibson P G, Simpson J L, et al. Activity and expression of histone acetylases and deacetylases in inflammatory phenotypes of asthma[J]. Clin Exp Allergy, 2014, 44(1): 47-57.
|
[22] |
Venza I, Visalli M, Oteri R, et al. Class II-specific histone deacetylase inhibitors MC1568 and MC1575 suppress IL-8 expression in human melanoma cells [J]. Pigment Cell Melanoma Res, 2013, 26(2): 193-204.
|
[23] |
Halaweish I, Nikolian V, Georgoff P, et al. Creating a “Pro-survival Phenotype” Through Histone Deacetylase Inhibition: Past, Present, and Future [J]. Shock (Augusta, Ga.), 2015, 44(1): 6.
|
[24] |
Collins L M, Adriaanse L J, Theratile S D, et al. Class-IIa Histone Deacetylase Inhibition Promotes the Growth of Neural Processes and Protects Them Against Neurotoxic Insult[J]. Mol Neurobiol, 2015,51(3):1432-1442.
|
[25] |
Yang X J, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men [J]. Nat Rev Mol Cell Biol, 2008, 9(3): 206-218.
|
[26] |
Haberland M, Montgomery R L, Olson E N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy [J]. Nat Rev Genet, 2009, 10(1): 32-42.
|
[27] |
Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization [J]. Epigenetics, 2016, 8(2): 251-269.
|
[28] |
Lahm A, Paolini C, Pallaoro M, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases[J]. Proc Natl Acad Sci USA, 2007, 104(44): 17335-17340.
|
[29] |
Bantscheff M, Hopf C, Savitski M M, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes[J]. Nat Biotechnol, 2011, 29(3): 255-265.
|
[30] |
Bottomley M J, Lo Surdo P, Di Giovine P, et al. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain [J]. J Biol Chem, 2008, 283(39): 26694-26704.
|
[31] |
Brandl A, Heinzel T, Kramer O H. Histone deacetylases: salesmen and customers in the post-translational modification market [J]. Biol Cell, 2009, 101(4): 193-205.
|
[32] |
中国医师协会急诊医师分会. 急性百草枯中毒诊治专家共识(2013)[J]. 中国急救医学, 2013, 33(6):484-489.
|
[33] |
陈 瑶,崇 巍,王丹娜,等. 百草枯对巨噬细胞的毒性作用及ROS、IL-6和TNF-α产生的影响[J]. 中国医科大学学报, 2014, 43(12):1105-1108.
|
[34] |
Parbin S, Kar S, Shilpi A, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer [J]. J Histochem Cytochem, 2014, 62(1): 11-33.
|
[35] |
Zhao Y, Zhou P, Liu B, et al. Protective effect of suberoylanilide hydroxamic acid against lipopolysaccharide-induced liver damage in rodents[J]. J Surg Res, 2015, 194(2): 544-550.
|
[36] |
Ji M H, Li G M, Jia M, et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2013, 36(6): 1453-1459.
|
[37] |
Song R, Yu D, Yoon J, et al. Valproic acid attenuates the expression of pro-inflammatory cytokines lipopolysaccharide-treated canine peripheral blood mononuclear cells (in vitro) and in a canine endotoxemia model (in vivo)[J]. Veterinary immunology and immunopathology, 2015, 166(3): 132-137.
|
[38] |
Zhao T, Li Y, Liu B, et al. Selective inhibition of histone deacetylase 6 alters the composition of circulating blood cells in a lethal septic model [J]. J Surg Res, 2014, 190(2): 647-654.
|
[39] |
Zhao T, Li Y, Liu B, et al. Histone deacetylase III as a potential therapeutic target for the treatment of lethal sepsis[J]. J Trauma Acute Care Surg, 2014, 77(6): 913-919; discussion 919.
|
[40] |
Zhao T, Alam H B, Liu B, et al. Selective Inhibition of SIRT2 Improves Outcomes in a Lethal Septic Model [J]. Curr Mol Med, 2015, 15(7): 634-641.
|
[41] |
Mcwhorter F Y, Wang T, Nguyen P, et al. Modulation of macrophage phenotype by cell shape[J]. Proc Natl Acad Sci USA, 2013, 110(43): 17253-17258.
|
[42] |
Cabanel M, Brand C, Oliveira-Nunes M C, et al. Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity[J]. PLoS One, 2015, 10(7): e0132984.
|
|
|