胡一帆, 翟孝庭, 徐鑫宇, 姜华. 寒冷环境对骨关节炎发病及损伤影响的研究进展[J]. 武警医学, 2024, 35(3): 247-251.
HU Yifan, ZHAI Xiaoting, XU Xinyu, et al. Research progress of the effects of cold environment on the onset and injury of osteoarthritis. Med. J. Chin. Peop. Armed Poli. Forc., 2024, 35(3): 247-251.
Von M S, Hoeppe P, Maarouf A, et al. Prevalence of weather sensitivity in Germany and Canada[J]. Int J Biometeorol, 2005, 49(3): 156-166.
[1]
Nuesch E, Dieppe P, Reichenbach S, et al. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study[J]. BMJ, 2011, 342: d1165.
[6]
Kochukov M Y, McNearney T A, Yin H, et al. Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes[J]. Mol Pain, 2009, 5: 49.
[2]
Xue Y, Chen Y, Jiang D, et al. Self-reported weather sensitivity is associated with clinical symptoms and structural abnormalities in patients with knee osteoarthritis: a cross-sectional study[J]. Rheumatol Ther, 2021, 8(3): 1405-1417.
[7]
David J,Hunter E A R. The impact of arthritis on pain and quality of life: an Australian survey[J]. Int J RheumDis, 2014, 17: 149-155.
[3]
Fu K, Metcalf B, Bennell K L, et al.Association of weather factors with the risk of pain exacerbations in people withhip osteoarthritis[J]. Scand J Rheumatol, 2021, 50(1): 68-73.
[8]
Erik J. Timmermans L A. The influence of weather conditions on joint pain in older people with osteoarthritis: results from the European project on osteoarthritis[J].JRheumatol, 2015, 42:10.
[4]
Nagai T, Sato M, Kobayashi M, et al. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis[J]. Arthritis Res Ther, 2014, 16(5): 427.
[9]
Guedj D, Weinberger A. Effect of weather conditions on rheumatic patients[J]. Ann Rheum Dis,1990, 49(3):158-159.
[5]
Von M S, Hoeppe P, Maarouf A, et al. Prevalence of weather sensitivity in Germany and Canada[J]. Int J Biometeorol, 2005, 49(3): 156-166.
[10]
Ziadé N B. Prospective correlational time-series analysis of the influence of weather and air pollution on joint pain in chronic rheumatic diseases[J]. Clin Rheumatol, 2021, 10(40): 3929-3940.
[6]
Kochukov M Y, McNearney T A, Yin H, et al. Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes[J]. Mol Pain, 2009, 5: 49.
[11]
Telfer S, Obradovich N. Local weather is associated with rates of online searches for musculoskeletal pain symptoms[J]. PLoS One, 2017, 12(8): e181266.
[7]
David J,Hunter E A R. The impact of arthritis on pain and quality of life: an Australian survey[J]. Int J RheumDis, 2014, 17: 149-155.
[12]
Sibley J T. Weather and arthritis symptoms[J]. J Rheumatol, 1985, 12(4): 707-710.
[8]
Erik J. Timmermans L A. The influence of weather conditions on joint pain in older people with osteoarthritis: results from the European project on osteoarthritis[J].JRheumatol, 2015, 42:10.
[13]
Wilder F H. Osteoarthritis pain and weather[J]. Rheumatology (Oxford), 2003, 8(42): 955-958.
[9]
Guedj D, Weinberger A. Effect of weather conditions on rheumatic patients[J]. Ann Rheum Dis,1990, 49(3):158-159.
[14]
Nowack J, Giroud S, Arnold W, et al. Muscle non-shivering thermogenesis and its role in the evolution of endothermy[J]. Front Physiol, 2017, 8: 889.
[10]
Ziadé N B. Prospective correlational time-series analysis of the influence of weather and air pollution on joint pain in chronic rheumatic diseases[J]. Clin Rheumatol, 2021, 10(40): 3929-3940.
[15]
Brini M, Carafoli E. Calcium pumps in health and disease[J]. Physiol Rev, 2009, 89(4): 1341-1378.
[11]
Telfer S, Obradovich N. Local weather is associated with rates of online searches for musculoskeletal pain symptoms[J]. PLoS One, 2017, 12(8): e181266.
[16]
Pant M, Bal N C, Periasamy M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle[J]. Trends Endocrinol Metab, 2016, 27(12): 881-892.
[12]
Sibley J T. Weather and arthritis symptoms[J]. J Rheumatol, 1985, 12(4): 707-710.
[17]
Vezina F, Gerson A R, Guglielmo C G, et al. The performing animal: causes and consequences of body remodeling and metabolic adjustments in red knots facing contrasting thermal environments[J]. Am J Physiol RegulIntegr Comp Physiol, 2017, 313(2): R120-R131.
[13]
Wilder F H. Osteoarthritis pain and weather[J]. Rheumatology (Oxford), 2003, 8(42): 955-958.
[18]
Buser K S. Effect of cold environment on skeletal muscle mitochondria in growing rats[J]. Cell Tissue Res, 1982, 2(225): 427-436.
[14]
Nowack J, Giroud S, Arnold W, et al. Muscle non-shivering thermogenesis and its role in the evolution of endothermy[J]. Front Physiol, 2017, 8: 889.
[19]
Xu Z, Chen W, Wang L, et al. Cold exposure affects lipid metabolism, fatty acids composition and transcription in pig skeletal muscle[J]. Front Physiol, 2021, 12: 748-801.
[15]
Brini M, Carafoli E. Calcium pumps in health and disease[J]. Physiol Rev, 2009, 89(4): 1341-1378.
[20]
Bal N C, Maurya S K, Singh S, et al. Increased reliance on muscle-based thermogenesis upon acute minimization of brown adipose tissue function[J]. J Biol Chem, 2016, 291(33): 17247-17257.
[16]
Pant M, Bal N C, Periasamy M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle[J]. Trends Endocrinol Metab, 2016, 27(12): 881-892.
[21]
Guarnieri A R, Benson T W, Tranter M. Calcium cycling as a mediator of thermogenic metabolism in adipose tissue[J].Mol Pharmacol, 2022, 102(1): 51-59.
[17]
Vezina F, Gerson A R, Guglielmo C G, et al. The performing animal: causes and consequences of body remodeling and metabolic adjustments in red knots facing contrasting thermal environments[J]. Am J Physiol RegulIntegr Comp Physiol, 2017, 313(2): R120-R131.
[22]
Rowland L A, Bal N C, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy[J].Biol Rev Camb Philos Soc, 2015, 90(4): 1279-1297.
[18]
Buser K S. Effect of cold environment on skeletal muscle mitochondria in growing rats[J]. Cell Tissue Res, 1982, 2(225): 427-436.
[23]
Rowland L A, Bal N C, Kozak L P, et al. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress[J]. J Biol Chem, 2015, 290(19):12282-12289.
[19]
Xu Z, Chen W, Wang L, et al. Cold exposure affects lipid metabolism, fatty acids composition and transcription in pig skeletal muscle[J]. Front Physiol, 2021, 12: 748-801.
[24]
Deveci D E S. Differing mechanisms of cold-induced changes in capillary supply in m.tibialis anterior of rats and hamsters[J]. J ExpBiol, 2002, 6(205): 829-840.
[20]
Bal N C, Maurya S K, Singh S, et al. Increased reliance on muscle-based thermogenesis upon acute minimization of brown adipose tissue function[J]. J Biol Chem, 2016, 291(33): 17247-17257.
[25]
Bal N C, Maurya S K, Pani S, et al. Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners[J].Biosci Rep, 2017, 37(5): 1087.
[21]
Guarnieri A R, Benson T W, Tranter M. Calcium cycling as a mediator of thermogenic metabolism in adipose tissue[J].Mol Pharmacol, 2022, 102(1): 51-59.
[26]
Hanssen M J, Hoeks J, Brans B, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus[J]. Nat Med, 2015, 21(8): 863-865.
[22]
Rowland L A, Bal N C, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy[J].Biol Rev Camb Philos Soc, 2015, 90(4): 1279-1297.
[27]
Sepakishi D M, Sotoudehnia Y, Iqbal A, et al. Cold acclimation causes fiber type-specific responses in glucose and fat metabolism in rat skeletal muscles[J]. Sci Rep, 2017, 7(1): 15430.
[23]
Rowland L A, Bal N C, Kozak L P, et al. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress[J]. J Biol Chem, 2015, 290(19):12282-12289.
Deveci D E S. Differing mechanisms of cold-induced changes in capillary supply in m.tibialis anterior of rats and hamsters[J]. J ExpBiol, 2002, 6(205): 829-840.
[29]
陈彦丞.长期低温环境对大鼠膝骨关节炎发生的影响[D].福州:福建医科大学, 2021.
[25]
Bal N C, Maurya S K, Pani S, et al. Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners[J].Biosci Rep, 2017, 37(5): 1087.
[30]
Moeini M, Lee K B, Quinn T M. Temperature affects transport of polysaccharides and proteins in articular cartilage explants[J]. J Biomech, 2012, 45(11): 1916-1923.
[26]
Hanssen M J, Hoeks J, Brans B, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus[J]. Nat Med, 2015, 21(8): 863-865.
[31]
Ito A, Aoyama T, Iijima H, et al. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes[J]. J Orthop Res, 2015, 33(5): 633-639.
[27]
Sepakishi D M, Sotoudehnia Y, Iqbal A, et al. Cold acclimation causes fiber type-specific responses in glucose and fat metabolism in rat skeletal muscles[J]. Sci Rep, 2017, 7(1): 15430.
[32]
Riegger J, Zimmermann M, Joos H, et al. Hypothermia promotes cell-protective and chondroprotective effects after blunt cartilage trauma[J]. Am J Sports Med, 2018, 46(2): 420-430.
Eltawil N M, Ahmed S, Chan L H, et al. Chondroprotection in models of cartilage injury by raising the temperature and osmolarity of irrigation solutions[J]. Cartilage, 2018, 9(3): 313-320.
[29]
陈彦丞.长期低温环境对大鼠膝骨关节炎发生的影响[D].福州:福建医科大学, 2021.
[34]
Fernandes E S, Russell F A, Alawi K M, et al. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner[J]. Arthritis Res Ther, 2016, 18:7.
[30]
Moeini M, Lee K B, Quinn T M. Temperature affects transport of polysaccharides and proteins in articular cartilage explants[J]. J Biomech, 2012, 45(11): 1916-1923.
[35]
Yin Y, Zhang F, Feng S, et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP[J].Science, 2022, 378(6616): eadd1268.
[31]
Ito A, Aoyama T, Iijima H, et al. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes[J]. J Orthop Res, 2015, 33(5): 633-639.
[36]
Story G M, Peier A M, Reeve A J, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures[J]. Cell, 2003, 112(6): 819-829.
[32]
Riegger J, Zimmermann M, Joos H, et al. Hypothermia promotes cell-protective and chondroprotective effects after blunt cartilage trauma[J]. Am J Sports Med, 2018, 46(2): 420-430.
[37]
Peier A M, Moqrich A, Hergarden A C, et al. A TRP channel that senses cold stimuli and menthol[J]. Cell, 2002, 108(5): 705-715.
[33]
Eltawil N M, Ahmed S, Chan L H, et al. Chondroprotection in models of cartilage injury by raising the temperature and osmolarity of irrigation solutions[J]. Cartilage, 2018, 9(3): 313-320.
[38]
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011, 91(4): 1447-1531.
[34]
Fernandes E S, Russell F A, Alawi K M, et al. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner[J]. Arthritis Res Ther, 2016, 18:7.
[39]
Yu J, Chen S, Zeng Z, et al. Effects of cold exposure on performance and skeletal muscle fiber in weaned piglets[J]. Animals (Basel), 2021, 11(7).
[35]
Yin Y, Zhang F, Feng S, et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP[J].Science, 2022, 378(6616): eadd1268.
[40]
Ijiri D, Kanai Y, Hirabayashi M. Possible roles of myostatin and PGC-1alpha in the increase of skeletal muscle and transformation of fiber type in cold-exposed chicks: expression of myostatin and PGC-1alpha in chicks exposed to cold[J]. Domest Anim Endocrinol, 2009, 37(1): 12-22.
[36]
Story G M, Peier A M, Reeve A J, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures[J]. Cell, 2003, 112(6): 819-829.
[41]
Beignon F, Gueguen N, Tricoire-Leignel H, et al. The multiple facets of mitochondrial regulations controlling cellular thermogenesis[J]. Cell Mol Life Sci, 2022, 79(10): 525.
[37]
Peier A M, Moqrich A, Hergarden A C, et al. A TRP channel that senses cold stimuli and menthol[J]. Cell, 2002, 108(5): 705-715.
[42]
Baar K W. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1[J]. The FASEB Journal, 2003, 14(16): 1879-1886.
[38]
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011, 91(4): 1447-1531.
[43]
Mahalingam S C. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes[J]. J Physiol, 2020, 23(598): 5411-5426.
[39]
Yu J, Chen S, Zeng Z, et al. Effects of cold exposure on performance and skeletal muscle fiber in weaned piglets[J]. Animals (Basel), 2021, 11(7).
[44]
Venditti P R. Effect of cold-induced hyperthyroidism on H2O2 production and susceptibility to stress conditions of rat liver mitochondria[J]. Free Radical BioMed, 2004, 3(36): 348-358.
[40]
Ijiri D, Kanai Y, Hirabayashi M. Possible roles of myostatin and PGC-1alpha in the increase of skeletal muscle and transformation of fiber type in cold-exposed chicks: expression of myostatin and PGC-1alpha in chicks exposed to cold[J]. Domest Anim Endocrinol, 2009, 37(1): 12-22.
[45]
Vucetic M, Stancic A, Otasevic V, et al. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (spermophiluscitellus): an update[J]. Free Radical Bio Med, 2013, 65: 916-924.
[41]
Beignon F, Gueguen N, Tricoire-Leignel H, et al. The multiple facets of mitochondrial regulations controlling cellular thermogenesis[J]. Cell Mol Life Sci, 2022, 79(10): 525.
[42]
Baar K W. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1[J]. The FASEB Journal, 2003, 14(16): 1879-1886.
[43]
Mahalingam S C. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes[J]. J Physiol, 2020, 23(598): 5411-5426.
[44]
Venditti P R. Effect of cold-induced hyperthyroidism on H2O2 production and susceptibility to stress conditions of rat liver mitochondria[J]. Free Radical BioMed, 2004, 3(36): 348-358.
[45]
Vucetic M, Stancic A, Otasevic V, et al. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (spermophiluscitellus): an update[J]. Free Radical Bio Med, 2013, 65: 916-924.