Studies in Science of Science ›› 2023, Vol. 41 ›› Issue (12): 2216-2225.

Previous Articles     Next Articles

Industrial Data Governance: Core Issues, Transformation Logic and Research Framework

  

  • Received:2022-08-23 Revised:2022-10-25 Online:2023-12-15 Published:2023-12-15
  • Contact: Huang ZhenMing

工业数据治理:核心议题、转型逻辑与研究框架

李佳钰1,2,黄甄铭3,梁正3   

  1. 1. 清华大学中国科技政策研究中心
    2. 神州医疗科技股份有限公司
    3. 清华大学公共管理学院
  • 通讯作者: 黄甄铭
  • 基金资助:
    科技创新2030-“新一代人工智能”重大项目;中国科协高端科技创新智库青年项目

Abstract: Industrial data governance has been the concentrated embodiment of the digital and intelligent transformation in the field of traditional industries. Based on the four core issues of industrial data, multi-source and heterogeneous, dividend release, value mining, system compatibility, this paper has researched and judged the internal causes and practical obstacles of governance. Further, from the perspective of comparison between China and Germany, the characteristics and laws of industrial data governance under the influence of different systems and mechanisms have been summarized. As a conclusion, this paper has found that the core feature of industrial data governance is value co-creation, and the theoretical basis could be constructed from three dimensions of strategic management, innovation management and industrial engineering management, which provided a theoretical reference for the practice and policy formulation of industrial data governance in China.

摘要: 工业数据治理是传统工业向数字化和智能化转变的集中体现。本文从工业数据多源异构、红利释放、价值挖掘和体系兼容四个核心议题出发,研判了治理的内在动因与现实障碍。并且从中德对比的角度,进一步总结不同体制机制影响下工业数据治理的特征规律。研究发现,工业数据治理的核心特征是价值共创,可以从战略管理、创新管理和工业工程管理三个维度架构理论基础。研究结论为我国工业数据治理的实践及政策制定提供理论参考。