• 中国科学学与科技政策研究会
  • 中国科学院科技政策与管理科学研究所
  • 清华大学科学技术与社会研究中心
ISSN 1003-2053 CN 11-1805/G3

›› 2013, Vol. ›› Issue (2): 310-320.

• 技术创新与制度创新 • 上一篇    

基于复杂社会网络的创新扩散多智能体仿真研究

黄玮强1,姚爽2,庄新田3   

  1. 1. 沈阳市东北大学工商管理学院
    2. 沈阳化工大学经济管理学院
    3. 东北大学工商管理学院
  • 收稿日期:2012-03-21 修回日期:2012-12-24 出版日期:2013-02-15 发布日期:2013-02-21
  • 通讯作者: 黄玮强

The Agent-Based Simulation of Innovation Diffusion Based on Complex Social Networks

  • Received:2012-03-21 Revised:2012-12-24 Online:2013-02-15 Published:2013-02-21

摘要: 创新扩散是由潜在采纳者的微观采纳决策所共同涌现出的宏观动力学行为。以复杂社会网络为创新扩散建模载体,通过建立潜在采纳者在社会学习和规范压力双重影响下的创新采纳决策及扩散机制,运用基于多智能体的仿真研究方法,研究微观层面因素是如何影响创新的宏观扩散。研究发现:无标度社会网络下的创新扩散深度最大及扩散速度最快;潜在采纳者的创新信息评价策略会显著地影响创新扩散深度;初始采纳者比例的提高可加快创新扩散速度,但无法持续提高扩散深度;过强或过弱的观念领导者创新性,均不利于创新扩散的深度;不同的初始采纳者类型对创新扩散深度、以及观念领导者创新性的强弱对创新扩散速度的影响取决于社会网络的拓扑结构。研究结果对于制定创新推广策略具有一定的指导意义。

关键词: 创新扩散, 社会学习, 规范压力, 复杂社会网络, 多智能体仿真, innovation diffusion, social learning, normative pressure, complex social network, agent-based simulation

Abstract: The innovation diffusions are macro dynamics emerging from the micro adoption decisions of potential adopters. By using complex social networks as innovation diffusion modeling carriers, this paper established the innovation adoption decision and diffusion mechanisms of potential adopters under the influences of social learning and normative pressure, and then the agent-based simulation method was used to study how the micro factors influence the macro innovation diffusions. The results show that the ultimate adoption percentage is highest and the diffusion speed is fastest under the scale-free social network. The evaluation strategies of potential adopters of innovation related information will significantly influence the adoption percentage. The increase of the adoption percentage at the initial time can accelerate innovation diffusion speed, but it can not continuously raise the ultimate adoption percentage. Both the too innovative and too conservative behaviors of the opinion leaders go against the increase of ultimate adoption percentages. The influences of different kind of initial adopters on the ultimate adoption percentage and the influences of opinion leaders’ innovativeness on the innovation diffusion speed depend on social networks’ topology structures. The results can be used as guidance for formulating innovation promotion strategies.

中图分类号: