• 中国科学学与科技政策研究会
  • 中国科学院科技政策与管理科学研究所
  • 清华大学科学技术与社会研究中心
ISSN 1003-2053 CN 11-1805/G3

科学学研究 ›› 2013, Vol. ›› Issue (5): 780-0.

• 技术创新与制度创新 • 上一篇    下一篇

地理集聚与空间依赖——中国区域创新的时空演进模式

王春杨1,张超   

  • 收稿日期:2012-10-26 修回日期:2013-03-25 出版日期:2013-05-15 发布日期:2013-05-17
  • 通讯作者: 王春杨
  • 基金资助:

    国家社会科学基金重大项目

Geographic concentration and spatial dependence——Time-space model of provincial innovation in China

  • Received:2012-10-26 Revised:2013-03-25 Online:2013-05-15 Published:2013-05-17

摘要: 文章以专利申请受理数作为创新产出的衡量指标,以31个省域作为空间观测单元,对我国1997-2009年期间区域创新的空间差异和演进特征进行广泛测度和探索性空间数据分析(ESDA)。区位基尼系数和泰尔指数的计算结果表明:我国区域创新时空演进呈现显著的地理集聚特征,且集聚程度在考察期内呈现出稳定的递增趋势;我国区域创新的区域间差异在考察期内不断减小,整体区域创新差异的不断加大主要来源于区域内部差异,且东部地区对整体差异水平的贡献率最高。全局的Moran's I统计分析结果表明区域创新存在着显著的空间依赖性(空间自相关),基于局部Moran's I和Moran散点图的LISA分析进一步刻画了区域创新的局部空间模式及时空演进态势。文章在一定程度上揭示了知识溢出及其空间局限性对于区域创新时空演进模式的贡献和推动作用,分析结论为制定合理的区域科技政策提供了实证依据。

关键词: 地理集聚, 空间依赖, 探索性空间数据分析, 知识溢出, 中国

Abstract: Using the methods of exploratory spatial data analysis(ESDA)and spatial analysis software, this paper analyzes the spatial distribution of innovation outputs, measured by the number of patient applications, throughout 31 Chinese provinces from 1997 to 2009. The visual patent distribution plot has shown the distribution of innovation outputs at the provincial level and its spatial dynamic changes. A significant high level of spatial concentration of innovation outputs among Chinese provinces has been captured by the computed spatial Gini coefficient and Theil index, and the concentration level has increased steadily over the past years. The analysis using the Moran’s I statistic gives the strong evidence of spatial autocorrelation in innovation activities among provinces, while the concentration pattern of innovation activities among provinces and its changes over time have been revealed by using the local Moran’s I and the Moran scatter plot, which indicate the clustering nature of the spatial distribution of provincial innovation activities. This study can provide a scientific basis for the intuitive expression of the spatial correlation of innovation outputs among provinces, and puts forward that the spatial statistical analysis could present some references valuable for analyzing spatial structure and patterns and policy-making.

Key words: geographic concentration, spatial dependence, ESDA, knowledge spillovers, china.