• 中国科学学与科技政策研究会
  • 中国科学院科技政策与管理科学研究所
  • 清华大学科学技术与社会研究中心
ISSN 1003-2053 CN 11-1805/G3

科学学研究 ›› 2020, Vol. 38 ›› Issue (3): 525-535.

• 技术创新与制度创新 • 上一篇    下一篇

中国工业技术创新效率空间关联及其影响因素

张曦1,郭淑芬2   

  1. 1. 山西财经大学管理科学与工程学院
    2. 山西财经大学
  • 收稿日期:2019-01-03 修回日期:2019-05-30 出版日期:2020-03-15 发布日期:2020-04-02
  • 通讯作者: 张曦
  • 基金资助:
    中国创新资源与区域产业结构的空间错配及修正机制研究;资源型地区实施创新驱动战略评估研究;资源型地区产业转型路径研究

The Spatial Correlation of the Industrial Technology Innovation Efficiency and its Determinants in China

  • Received:2019-01-03 Revised:2019-05-30 Online:2020-03-15 Published:2020-04-02

摘要: 本文从知识空间扩散视角对工业技术创新效率发生空间关联进行理论分析,采用窗口MinDS超效率模型测度了2009-2015年中国30个省市区的工业技术创新效率,借助修正的引力模型确定了省际工业技术创新效率的空间关联关系,运用社会网络分析方法揭示工业技术创新效率的空间关联网络特征及其影响因素。结果表明:中国省际工业技术创新效率呈现出较为显著的、复杂的空间关联网络结构,并且空间关联越来越密切,不存在等级森严的空间结构;江苏、广东、山东等东部及中部较发达省份处于网络核心地位,黑龙江、吉林、广西等西部省份处于网络边缘地位;网络中板块内部的关联多于板块间的关联;空间邻近、交通便利、工业内部产业结构相似性、工业技术创新水平差异对工业技术创新效率的空间关联具有显著的正向影响,信息化水平差异对空间关联具有显著的负向影响。本研究为工业技术创新效率跨区域协同提升机制的建立以及区域创新驱动战略的实施提供政策参考。

Abstract: From the perspective of knowledge space diffusion, the paper makes a theoretical analysis of the spatial correlation of industrial technological innovation efficiency. The paper uses the window MinDS super-efficiency model to measure the industrial technology innovation efficiency of 30 provinces from 2009 to 2015 in China and determines the spatial correlation of industrial technology innovation efficiency between provinces with the adjusted gravity model. Then the paper uses the method of social network analysis to reveal the characteristics and the determinants of spatial correlation network. The results show that there exists a more significant and complex network structure in provincial industrial technology innovation efficiency. The spatial correlation is getting closer and there is no hierarchical in the network. Jiangsu, Guangdong, Shandong and other Eastern and central developed provinces are at the core of the network, while Heilongjiang, Jilin, Guangxi and other western provinces are at the edge of the network. There are more intra-block correlations than inter-block correlations in the network. Spatial proximity, convenient transportation, similarity of industrial structure and difference of industrial technology innovation level have significant positive effects on spatial correlation of the provincial industrial technology innovation efficiency, while difference of informatization level has significant negative effects on spatial correlation. The study provides policy reference for the establishment of cross-regional synergistic promotion mechanism of industrial technology innovation efficiency and the implementation of regional innovation driving strategy.