• 中国科学学与科技政策研究会
  • 中国科学院科技战略咨询研究院
  • 清华大学科学技术与社会研究中心
ISSN 1003-2053 CN 11-1805/G3

科学学研究 ›› 2025, Vol. 43 ›› Issue (1): 178-188.

• 前沿与观点 • 上一篇    下一篇

生物技术产业双重网络演化研究———基于时序指数随机图模型

王慧1,高山行2,杨张博3,李泞芮3   

  1. 1. 西安交通大学
    2. 西安交通大学管理学院
    3. 西安交通大学人文社会科学学院
  • 收稿日期:2023-10-12 修回日期:2024-01-25 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 王慧
  • 基金资助:
    国家社科基金重点项目;国家自然科学基金面上项目;中央高校基本科研业务费(人文社科类)

Research on the Dual Network Evolution of the Biotechnology Industry—Based on Temporal Exponential Random Graph Model

  • Received:2023-10-12 Revised:2024-01-25 Online:2025-01-15 Published:2025-01-15

摘要: 现代高科技企业同时嵌入在不同类型的网络中,但现有研究较少分析这些网络如何共同演化。论文从双重网络嵌入视角出发,利用2009年至2021年中国生物技术产业338家上市公司的29145名股东、35597名董事数据,构建股东关系网络与连锁董事网络,运用社会网络分析方法、时态指数随机图模型研究组织双重网络嵌入的演化路径。研究发现:股东关系网络演化过程中,内部结构越来越紧密,表现出小世界特征,连锁董事网络内部关系数量较少,整体结构稀疏。两个网络的演化均表现出显著的空间同质性特征;股东关系网络中关系的建立还表现出产权异质性,即国企和非国企间有更高概率建立联系;双重网络嵌入关系形成具有跨网络马太效应,即企业在一个网络中拥有的关系数量越多,在另一个网络中越容易建立新连接。本研究从单一网络研究视角迈入企业双重网络嵌入视角,反映了高科技企业在实践中嵌入不同网络的情况,检验了股东关系网络与连锁董事网络的内生形成机制,清晰展现了双重网络的演化路径。

Abstract: Modern high-tech enterprises are simultaneously embedded in various types of networks, yet there is limited research analyzing how these networks coevolve. This paper adopts a dual network embedding perspective and utilizes data from 29,145 shareholders and 35,597 directors of 338 listed public companies in the Chinese biotechnology industry from 2009 to 2021 to construct shareholder relationship networks and interlocking directorate networks. Employing social network analysis and Temporal Exponential Random Graph Model (TERGM), the paper investigates the evolutionary paths of organizational dual network embedding. The findings indicate that during the evolution of the shareholder relationship network, the internal structure becomes increasingly compact, exhibiting small-world characteristics, while the interlocking directorate network demonstrates relatively fewer internal connections, resulting in an overall sparse structure. Both networks' evolutions exhibit significant spatial homogeneity characteristics. Moreover, the establishment of relationships in the shareholder relationship network demonstrates ownership heterogeneity, indicating a higher probability of connection between state-owned and non-state-owned enterprises. The dual network embedding process demonstrates a cross-network Matthew effect, where enterprises with a greater number of connections in one network are more likely to establish new connections in the other network. By adopting a dual network embedding perspective, this study moves beyond the confines of single-network view, reflecting the practical embedding of high-tech enterprises in different networks. It examines the endogenous formation mechanisms of the shareholder relationship network and the interlocking directorate network, offering a clear depiction of the evolutionary trajectory of dual networks.