Studies in Science of Science ›› 2019, Vol. 37 ›› Issue (6): 977-985.

Previous Articles     Next Articles

Scientometric analysis for F0701: Applications and grants in 2018

  

  • Received:2018-11-19 Revised:2019-04-16 Online:2019-06-15 Published:2019-06-28

科学基金资助F0701的科学计量分析

黄璐1,2,朱一鹤1,1,陈丽1,郑永和3   

  1. 1.
    2. 北京理工大学管理与经济学院
    3. 北京师范大学
  • 通讯作者: 郑永和

Abstract: National Natural Science Foundation of China (NSFC) added a new application code F0701 for Educational Information Science and Technology in the year of 2018. This study carried out scientometrics analysis on the application and funding projects of F0701 in 2018 and find that the application project cover ten thematic clusters, namely, personalized teaching, educational big data, machine learning, augmented reality, educational robot, learning evaluation, interactive learning, digital resources, collaborative learning and resource allocation. Results show that the research of Educational Information Science and Technology is still in the period of technology migration, mainly focusing on infiltrating information technologies into the field of education, lacking deep conciseness on the key scientific issues and being deficient of deep cross fusion. Therefore, researchers should strengthen the application of natural science research paradigm, enhance the cross-integration of research teams, and improve the ability to condense scientific problems; and NSFC should further enrich and improve the code structure of F0701, guide the experts to evaluate the applications according to the project characteristics in this field, increase the funding rate and support, in order to promote the overall research level in the field of Educational Information Science and Technology of China.

摘要: 2018年,科学基金信息科学领域增设“教育信息科学与技术”申请代码(F0701)资助教育科学基础研究。基于首批F0701科学基金申请与资助项目数据的科学计量分析显示:申请项目涵盖了个性化教学、教育大数据、机器学习、增强现实、教育机器人、学习评测、交互学习、数字资源、协同学习、资源配置等十个主题聚类。研究发现,目前的教育信息科学与技术研究仍处于技术迁移期,主要以信息领域向教育领域渗透的研究工作为主,但对教育领域的重大关键科学问题缺乏深刻凝练,深度交叉融合不足。建议研究者加强对自然科学研究范式的运用、增强研究团队的交叉融合、提高凝练科学问题的能力;建议科学基金进一步充实完善申请代码,引导评审专家根据本领域项目申请的特点进行评估,提高资助率并加大支持力度,促进我国教育信息科学与技术领域整体研究水平的提升。