[1] Suresh H, Guttag J V. A framework for understanding unintended consequences of machine learning[EB/OL].https://arxiv.org/pdf/1901.10002v5.pdf,2021-12-01/2022-12-1.
[2] David D, London A J. Algorithmic bias in autonomous systems[C]//Sierra C. In Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia:AAAI Press, 2017:4691-4697.
[3] Ciampaglia G L, Nematzadeh A, Menczer F, et al. How algorithmic popularity bias hinders or promotes quality[J]. Scientific reports, 2018, 8(1): 1-7.
[4] O'neil C. Weapons of math destruction: How big data increases inequality and threatens democracy[M]. New York:Crown, 2016.
[5] Fazelpour S, Lipton Z C. Algorithmic fairness from a non-ideal perspective[C]//Markham A, et al. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA:
Association for Computing Machinery, 2020:57-63.
[6] Giovanola B, Tiribelli S. Weapons of moral construction? On the value of fairness in algorithmic decision-making[J]. Ethics and Information Technology, 2022, 24(1): 1-13.
[7] D'Alessandro B, O'Neil C, Lagatta T. Conscientious Classification:A Data Scientist's Guide to Discrimination-Aware Classification[J]. Big Data, 2017, 5(2):120-134.
[8] Friedman B, Nissenbaum H. Bias in computer systems[J]. Acm Transactions on Information Systems, 1996, 14(3):330-347.
[9] Hardt M, Price E, Srebro N. Equality of Opportunity in Supervised Learning[C]//Lee D D. Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY, USA:Curran Associates Inc, 2016:3323-3331.
[10] Kusner M J, Loftus J R, Russell C, et al. Counterfactual Fairness[C]//Luxburg U V, et al. Neural Information Processing Systems. Red Hook, NY, USA:Curran Associates Inc, 2017:4069-4079.
[11] Mehrabi N, Morstatter F, Saxena N, et al. A Survey on Bias and Fairness in Machine Learning[J]. ACM Computing Surveys, 2021, 54(6):1-35.
[12] Dwork C, Hardt M, Pitassi T, et al. Fairness through awareness[C]//Goldwasser S. Proceedings of the 3rd innovations in theoretical computer science conference. New York, NY, USA:Association for Computing Machinery, 2012: 214-226.
[13] Kearns M, Neel S, Roth A, et al. An empirical study of rich subgroup fairness for machine learning[C]//Proceedings of the conference on fairness, accountability, and transparency. New York, NY, USA: Association for Computing Machinery, 2019: 100-109.
[14] Corbett-Davies S, Goel S. The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning[EB/OL]. https://arxiv.org/pdf/1808.00023.pdf,2018-08-04/2022-12-1.
[15] Kleinberg J, Mullainathan S, Raghavan M. Inherent Trade-Offs in the Fair Determination of Risk Scores[EB/OL]. https://arxiv.org/pdf/1609.05807.pdf,2016-11-17/2022-12-1.
[16] Tsamados A, Aggarwal N, Cowls J, et al. The ethics of algorithms: key problems and solutions[J]. AI & Society, 2022, 37(1): 215-230.
[17] Gillis T B, Spiess J L. Big data and discrimination[J]. The University of Chicago Law Review, 2019, 86(2): 459-488.
[18] Edwards L , Veale M . Slave to the Algorithm? Why a 'right to an explanation' is probably not the remedy you are looking for[J]. Duke Law & Technology Review, 2017, 16(1):18-84.
[19] Skirpan M, Gorelick M. The Authority of" Fair" in Machine Learning[EB/OL]. https://arxiv.org/pdf/1706.09976.pdf,2017-07-07/2022-12-1.
[20] Selbst A D, Boyd D, Friedler S A, et al. Fairness and abstraction in sociotechnical systems[C]//Proceedings of the conference on fairness, accountability, and transparency. New York, NY, USA: Association for Computing Machinery, 2019: 59-68.
[21] Wong P H. Democratizing Algorithmic Fairness[J]. Philosophy & Technology, 2020, 33(2):225-244.
[22] Friedler S A , Scheidegger C , Venkatasubramanian S. On the (im)possibility of fairness[EB/OL]. https://arxiv.org/pdf/1609.07236v1.pdf,2016-09-23/2022-12-1.
[23] Berk R, Heidari H, Jabbari S, et al. Fairness in criminal justice risk assessments: The state of the art[J]. Sociological Methods & Research, 2021, 50(1): 3-44.
[24] Tilmes N. Disability, fairness, and algorithmic bias in AI recruitment[J]. Ethics and Information Technology, 2022, 24(2):1-13.
[25] Scantamburlo T. Non-empirical problems in fair machine learning[J]. Ethics and Information Technology, 2021, 23(4): 703-712.
[26] Brey P. Disclosive computer ethics[J]. ACM Sigcas Computers and Society, 2000, 30(4): 10-16.
[27] Moor J. What is computer ethics?[J]. Metaphilosophy,1985,16(4): 266–75.
[28] Franke U. Rawls’s original position and algorithmic fairness[J]. Philosophy & Technology, 2021, 34(4): 1803-1817.
[29] Rawls J. A Theory of Justice[M].Beijing:China Social Sciences Publishing House, 1999:
72-75.
[30] Forst R . Justice, democracy and the right to justification: Rainer Forst in dialogue[M]. Landon:Bloomsbury Academic, 2014:6.
[31] 刘培, 池忠军. 算法的伦理问题及其解决进路[J]. 东北大学学报(社会科学版), 2019, 21(02):118-125. Liu P,Chi Z J. The ethical problems of algorithms and their solutions[J]. Journal of Northeastern University (Social Science Edition),2019, 21(02):118-125.
[32]刘璇, 朝乐门. AI治理中的公平性及其评价方法研究[J].情报资料工作, 2022 , 43(05):24-33. Liu X,Chao L M.Research on Fairness in AI Governance and its evaluation method[J].Information and Documentation Services,2022 , 43(05):24-33. |